46
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN HÀ LINH ĐA THỨC BẤT KHẢ QUY LUẬN VĂN THẠC SỸ TOÁN HỌC Thái Nguyên 2012 1Số hóa bởi Trung tâm Học liệu – Đại học Thái Nguyên http://www.lrc-tnu.edu.vn

LV Da Thuc Bat Kha Quy

Embed Size (px)

DESCRIPTION

abc

Citation preview

  • I HC THI NGUYN TRNG I HC KHOA HC

    NGUYN H LINH

    A THC BT KH QUY

    LUN VN THC S TON HC

    Thi Nguyn 2012

    1S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Mc lc

    Mc lc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    Li ni u . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    1 a thc bt kh quy 5

    1.1 Khi nim a thc . . . . . . . . . . . . . . . . . . . . . . 5

    1.2 a thc bt kh quy . . . . . . . . . . . . . . . . . . . . . 9

    1.3 Trng phn r ca a thc . . . . . . . . . . . . . . . . . 13

    2 Mt s phng php xt tnh bt kh quy trn Q 202.1 Nghim hu t v tnh bt kh quy trn Q . . . . . . . . . 212.2 Phng php dng B Gauss . . . . . . . . . . . . . . . 24

    2.3 Phng php dng tiu chun Eisenstein . . . . . . . . . . 28

    2.4 Rt gn theo mun mt s nguyn t . . . . . . . . . . . 30

    3 Tnh bt kh quy trn trng Zp 343.1 Kin thc chun b v nhm nhn Zp . . . . . . . . . . . . 343.2 Tnh bt kh quy trn trng Zp . . . . . . . . . . . . . . . 37Kt lun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

    Ti liu tham kho . . . . . . . . . . . . . . . . . . . . . . . . 45

    1

    2S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 2Li cm n

    Ti xin gi li bit n chn thnh nht n PGS.TS L Th Thanh Nhn.

    C dnh rt nhiu thi gian v tm huyt trong vic hng dn ti. Cho

    n hm nay, lun vn thc s ca ti c hon thnh cng chnh l

    nh s nhc nh, n c, s gip nhit tnh ca C.

    Ti xin trn trng cm n Ban Gim hiu, Khoa Ton - Tin v Phng

    o to - Khoa hc v Quan h quc t ca trng i hc Khoa hc -

    i hc Thi Nguyn. Ti xin trn trng cm n cc Thy C tn tnh

    truyn t nhng kin thc qu bu cng nh to mi iu kin thun li

    nht ti hon thnh lun vn ny.

    Ti xin chn thnh by t lng bit n n gia nh, bn b, nhng

    ngi khng ngng ng vin, h tr v to mi iu kin tt nht cho

    ti trong sut thi gian hc tp v thc hin lun vn.

    3S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 3Li ni u

    Trong l thuyt a thc, a thc bt kh quy ng mt vai tr quan

    trng ging nh vai tr ca s nguyn t trong tp cc s nguyn. Nu

    nh l c bn ca S hc cho php coi cc s nguyn t nh l nhng

    vin gch xy nn tp cc s nguyn, th cc a thc bt kh quy chnh l

    nhng vin gch xy nn tp tt c a thc. Bi v mi a thc bc dng

    dng chun (tc l h s cao nht bng 1) vi h s trn mt trng u

    vit c thnh tch ca hu hn a thc bt kh quy dng chun v s

    phn tch l duy nht nu khng k n th t cc nhn t.

    Bi ton xt tnh bt kh quy ca cc a thc trn trng phc C vtrn trng thc R c gii quyt t u th k 19, khi ngi ta chngminh c nh l c bn ca i s. C th, cc a thc bt kh quy

    trn C l v ch l cc a thc bc nht; cc a thc bt kh quy trn Rl v ch l cc a thc bc nht hoc bc hai vi bit thc m. Tuy nhin

    bi ton xt tnh bt kh quy ca a thc trn trng hu t Q hoc trntrng thng d Zp (vi p l s nguyn t) vn ang th thch cc nhton hc trn th gii.

    Mc ch ca lun vn l trnh by mt s kt qu v a thc bt kh

    quy trn mt trng, c bit l trn trng Q v trng Zp. Ni dung calun vn c vit da theo cun sch ``L thuyt Galois" ca J. Rotman

    [Rot], cun sch ``a thc v tnh bt kh quy" ca A. Schinzel [Sc], bi

    bo ``Tnh bt kh quy ca a thc" ng trn Tp ch i s ca I. Seres

    [S] v bi bo ``Tiu chun bt kh quy ca a thc" ng trn tp ch ni

    ting Ann. Math ca H. L. Dorwart - O. Ore [DO].

    Lun vn gm 3 chng. Chng 1 trnh by mt s kin thc c s v

    a thc bt kh quy v s dng a thc bt kh quy chng minh nh

    4S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 4l Kronecker v s tn ti ca trng phn r ca a thc (nh l 1.3.2)

    v nh l ca Galois v s tn ti mt trng c hu hn phn t (nh

    l 1.3.5). Chng 2 trnh by mt s phng php xt tnh bt kh quy

    ca a thc trn trng Q nh phng php tm nghim hu t, phngphp dng B Gauss, tiu chun Eisenstein v phng php rt gn

    theo mun mt s nguyn t. Bng cch s dng nh l Kronecker v

    s tn ti trng phn r v nh l Lagrange v cp ca nhm hu hn

    (nh l 3.1.7), tnh bt kh quy ca mt s a thc trn trng Zp (vi pl mt s nguyn t) c trnh by trong Chng 3.

    5S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 1

    a thc bt kh quy

    Trc khi trnh by khi nim v mt s kt qu v a thc bt kh quy,

    chng ta trnh by kin thc c s v a thc.

    1.1 Khi nim a thc

    1.1.1 nh ngha. Mt tp F cng vi hai php ton, k hiu l php cng

    v php nhn, c gi l trng nu cc tnh cht sau tha mn

    (i) Kt hp: a + (b + c) = (a + b) + c v (ab)c = a(bc) vi mi

    a, b, c F.(ii) Giao hon: a+ b = b+ a v ab = ba vi mi a, b F.(iii) Lut phn phi: a(b+ c) = ab+ ac vi mi a, b, c F.(iv) Tn ti phn t n v 1 F sao cho a1 = 1a = a vi mi a F.(v) Tn ti phn t 0 F sao cho a+ 0 = 0 + a = a vi mi a F.(vi) Mi a F , tn ti phn t i a F sao cho a+ (a) = 0.(vii) Mi 0 6= a F , tn ti phn t nghch o a1 F sao cho

    aa1 = 1.

    1.1.2 nh ngha. Cho F l mt trng v a0, a1, . . . , am F . Mt biuthc c dng f(x) = amx

    m+am1xm1+. . .+a1x+a0 c gi l mt a

    thcmt bin x. Tp cc a thc vi h s trn F c k hiu l F [x]. Nu

    5

    6S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 6am 6= 0 th ta ni bc ca f(x) lm v k hiu l deg f(x) = m. H s amc gi l h s cao nht ca f . Nu am = 1 th f(x) c gi l a thc

    dng chun (monic polynomial). Hai a thc l bng nhau nu n c cng

    bc v cc h s tng ng l bng nhau. Vi hai a thc f(x) =aix

    i

    v g(x) =bix

    i, ta nh ngha tng f(x) + g(x) =

    (ai + bi)x

    iv tch

    f(x)g(x) =ckx

    k, trong ck =

    i+j=k aibj.

    T nh ngha trn ta c ngay cc tnh cht sau y.

    1.1.3 B . Cho f(x), g(x), h(x) F [x]. Khi (i) deg(f(x) + g(x)) 6 max{deg f(x), deg g(x)}.(ii) Nu f(x) 6= 0 v g(x) 6= 0 th f(x)g(x) 6= 0 v

    deg(f(x)g(x)) = deg f(x) + deg g(x).

    (iii) Nu f(x) 6= 0 v f(x)g(x) = f(x)h(x) th g(x) = h(x).

    1.1.4 nh ngha. Cho f(x), g(x) F [x]. Nu f(x) = q(x)g(x) viq(x) F [x] th ta ni rng g(x) l c ca f(x) hay f(x) l bi ca g(x)v ta vit g(x)|f(x). Tp cc bi ca g(x) c k hiu l (g).

    Ta c ngay cc tnh cht n gin sau y.

    1.1.5 B . Cc pht biu sau l ng.

    (i) Vi c F v k l s t nhin ta c (x c)|(xk ck).(ii) Nu f(x) F [x] v c F th tn ti q(x) F [x] sao cho

    f(x) = q(x)(x c) + f(c).

    1.1.6 nh ngha. Cho f(x) = amxm + . . . + a0 F [x]. Gi s K lmt trng cha F . Mt phn t c K c gi l nghim ca f(x)nu f(c) = amc

    m + . . . + a0 = 0. Trong trng hp ny ta cng ni c l

    nghim ca phng trnh f(x) = 0.

    7S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 71.1.7 B . Cho f(x) F [x] v c F. Khi (i) c l nghim ca f(x) nu v ch nu f(x) l bi ca x c.(ii) S nghim ca f(x) khng vt qu deg f(x).

    1.1.8 Mnh . (Thut ton chia vi d). Cho f(x), g(x) F [x] vig(x) 6= 0. Khi tn ti duy nht cp a thc q(x), r(x) F [x] sao cho

    f(x) = q(x)g(x) + r(x)

    trong r(x) = 0 hoc deg r(x) < deg g(x).

    1.1.9 nh ngha. Mt tp con I 6= ca F [x] c gi l mt ian caF [x] nu n tha mn cc iu kin sau

    (i) Nu f(x), g(x) I th f(x) + g(x) I;(ii) Nu f(x) I v q(x) F [x] th q(x)f(x) I .

    Ch rng tp con I 6= ca F [x] l ian nu v ch nu f g Iv fh I vi mi f(x), g(x) I v h(x) F [x].

    1.1.10 Mnh . Nu I 6= {0} l mt ian trong F [x] v d(x) 6= 0 l athc c bc b nht trong I th

    I = (d) = {d(x)q(x) | q(x) F [x]}.

    Chng minh. Cho a thc f(x) I. Vit f(x) = d(x)q(x) + r(x) trong r(x) = 0 hoc deg r(x) < deg d(x). V f(x), d(x) I nn ta cr(x) = f(x) d(x)q(x) I . Do r(x) = 0 theo cch chn d(x). Suyra f(x) = d(x)q(x). Ngc li, v d(x) I nn d(x)q(x) I vi miq(x) F [x].

    1.1.11 nh ngha. Mt a thc dng chun d(x) F [x] c gi l cchung ln nht ca f(x), g(x) F [x] nu d(x)|f(x), d(x)|g(x) v nuh(x)|f(x) v h(x)|g(x) th h(x)|d(x). Ta k hiu c chung ln nht ca

    8S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 8f(x) v g(x) l gcd(f(x), g(x)). Nu gcd(f(x), g(x)) = 1 th ta ni f(x)

    v g(x) l nguyn t cng nhau.

    T Mnh 1.1.10 ta c kt qu sau.

    1.1.12 Mnh . Nu f(x), g(x) l hai a thc khng ng thi bng 0

    th gcd(f(x), g(x)) lun tn ti v l t hp tuyn tnh ca f(x) v g(x),

    tc l tn ti a(x), b(x) F [x] sao chogcd(f(x), g(x)) = a(x)f(x) + b(x)g(x).

    1.1.13 H qu. Cho p(x), f(x), g(x) F [x]. Nu gcd(p(x), f(x)) = 1v p(x)|f(x)g(x) th p(x)|g(x).Chng minh. Theo gi thit, 1 = p(x)a(x) + f(x)b(x). Suy ra

    g(x) = p(x)a(x)g(x) + f(x)b(x)g(x).

    Do p(x) l c ca a thc v phi nn p(x)|g(x).Vi 0 6= g(x) F [x], k hiu g(x) = g(x)/an trong an l h scao nht ca g(x). Ch rng g(x) l a thc dng chun. tm c

    chung ln nht ta c thut ton sau:

    1.1.14 Mnh . (Thut ton Euclid tm c chung ln nht). Cho hai a

    thc f(x), g(x) F [x] vi g(x) 6= 0. Nu g(x)|f(x) thgcd(f(x), g(x)) = g(x).

    Nu ngc li, chia lin tip ta c

    f(x) = q(x)g(x) + r(x), r(x) 6= 0, deg r(x) < deg g(x).g(x) = q1(x)r(x) + r1(x), r1(x) 6= 0, deg r1(x) < deg r(x).

    . . . . . . . . .

    rn2(x) = qn(x)rn1(x) + rn(x), rn(x) 6= 0, deg rn(x) < deg rn1(x).rn1(x) = qn+1(x)rn(x).

    9S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 9Khi gcd(f(x), g(x)) = rn(x).

    Chng minh. T ng thc cui ta c rn(x)|rn1(x). Thay vo ng thcth hai t di ln ta c rn(x)|rn2(x). C tip tc lp lun vi cc ngthc t di ln trn ta suy ra rn(x)|g(x) v rn(x)|f(x). Do rn(x)|f(x)v rn(x)|g(x). Gi s h(x)|f(x) v h(x)|g(x). T ng thc u tinta c h(x)|r(x). T ng thc th hai ta c h(x)|r1(x). C tip tc lplun trn vi cc ng thc t trn xung di ta c h(x)|rn(x). Do h(x)|rn(x).

    1.2 a thc bt kh quy

    1.2.1 nh ngha. Mt a thc f(x) F [x] c gi l bt kh quy nudeg f(x) > 0 v f(x) khng phn tch c thnh tch ca hai a thc c

    bc b hn. Nu deg f(x) > 0 v f(x) l tch ca hai a thc c bc b

    hn th ta ni f(x) l kh quy.

    Sau y l mt s v d v a thc bt kh quy.

    1.2.2 B . Cc pht biu sau l ng.

    (i) a thc bc nht lun bt kh quy.

    (ii) Nu f(x) bc ln hn 1 v c nghim trong F th f(x) kh quy.

    (iii) a thc bc 2 v bc 3 l bt kh quy nu v ch nu n khng c

    nghim trong F.

    (iv) a thc f(x) c bc dng l bt kh quy nu v ch nu f(x+a)

    l bt kh quy vi mi a F.Chng minh. (i) R rng a thc bc nht khng th l tch ca hai a

    thc bc thp hn.

    (ii) Nu deg f(x) > 1 v f(x) c nghim x = a F th f = (x a)gtrong deg g = deg f 1 1. V th f kh quy.

    10S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 10

    (iii) Cho f(x) c bc 2 hoc 3. Nu f kh quy th n phn tch c

    thnh tch ca hai a thc bc thp hn, mt trong hai a thc phi c

    bc 1, do f(x) c nghim trong F . Nu f(x) c nghim trong F th

    theo (ii), f(x) l kh quy.

    (iv) Cho a thc f(x) F [x] c bc dng v a F. Vi mi h F ,t h1(x) = h(x a). Ch rng deg h1(x) = deg h(x) vi mi h F .V th f(x + a) = k(x)g(x) l phn tch ca f(x + a) thnh hai a thc

    c bc thp hn khi v ch khi f(x) = k1(x)g1(x) l phn tch ca f(x)

    thnh tch ca hai a thc c bc thp hn. V vy f(x) kh quy khi v

    ch khi f(x+ a) kh quy.

    Tip theo, chng ta nh ngha khi nim a thc bt kh quy ca mt

    phn t cha F trong mt trng. Trc ht ta cn kt qu sau.

    1.2.3 nh ngha. Cho K l mt trng cha F v a K. Ta ni a lphn t i s trn F nu tn ti mt a thc 0 6= f(x) F [x] nhn alm nghim. Nu a khng i s trn F th ta ni a l siu vit trn F .

    1.2.4 Mnh . Cho K l mt trng cha F v a K l phn t is trn F . Khi tn ti duy nht mt a thc p(x) F [x] bt kh quydng chun nhn a lm nghim, v mi a thc g(x) F [x] nhn a lmnghim u l bi ca p(x).

    Chng minh. V a l nghim ca mt a thc khc 0 vi h s trong F

    nn tn ti a thc khc 0 vi h s trong F c bc b nht nhn a lm

    nghim. Gi p(x) F [x] l dng chun ca a thc ny. Khi a lnghim ca p(x). Ta chng minh p(x) bt kh quy. Gi s p(x) khng

    bt kh quy. Khi p(x) phn tch c thnh tch ca hai a thc trong

    F [x] vi bc b hn, v do mt trong hai a thc ny phi nhn a lm

    nghim, iu ny l mu thun vi cch chn p(x). Gi s g(x) F [x]

    11S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 11

    nhn a lm nghim. Nu p(x) khng l c ca g(x) th v p(x) bt

    kh quy nn gcd(g(x), p(x)) = 1, do 1 = p(x)q(x) + g(x)h(x) vi

    q(x), h(x) F [x]. Thay x = a vo c hai v ta c 1 = 0, iu ny l vl. Vy g(x) chia ht cho p(x). Gi s q(x) F [x] cng l a thc bt khquy dng chun nhn a lm nghim. Theo chng minh trn, q(x) l bi

    ca p(x). Vit q(x) = p(x)k(x). V q(x) bt kh quy nn k(x) = b F.Do q(x) = bp(x). ng nht h s cao nht ca hai v vi ch rng

    q(x) v p(x) u c dng chun, ta suy ra b = 1. V th p(x) = q(x).

    1.2.5 nh ngha. a thc p(x) F [x] bt kh quy dng chun xc nhnh trong mnh trn c gi l a thc bt kh quy ca a.

    1.2.6 V d. a thc x3 2 Q[x] l a thc bt kh quy ca 32 R;a thc x2 + 1 R[x] l a thc bt kh quy ca i C.

    a thc bt kh quy c tnh cht tng t nh tnh cht ca s nguyn

    t. Trc ht, chng ta bit, B Euclid pht biu rng s t nhin

    p > 1 l s nguyn t nu v ch nu p|ab ko theo p|a hoc p|b vi mis t nhin a, b. Mnh sau y l iu tng t cho a thc bt kh

    quy.

    1.2.7Mnh . Nu p(x) F [x] bt kh quy v p(x)|a(x)b(x) th p(x)|a(x)hoc p(x)|b(x) vi mi a(x), b(x) F [x]. c bit, mt a thc bt khquy l c ca mt tch hu hn a thc th n phi l c ca t nht

    mt trong cc a thc .

    Chng minh. Cho p(x)|a(x)b(x). Gi s p(x) khng l c ca a(x) vcng khng l c ca b(x). Khi gcd(p(x), a(x)) = 1. Do tn ti

    s(x), r(x) F [x] sao cho 1 = s(x)p(x) + r(x)a(x). Tng t, tn tie(x), f(x) F [x] sao cho 1 = e(x)p(x) + f(x)b(x). Nhn v vi v ca

    12S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 12

    hai ng thc ny ta c

    1 = p(x)g(x) + r(x)f(x)a(x)b(x)

    vi g(x) F [x]. a thc bn v phi ca ng thc trn l bi ca p(x),trong khi a thc bn v tri l 1 khng chia ht cho p(x). iu ny l

    v l.

    Tip theo, nh l c bn ca S hc ni rng mi s t nhin ln hn

    1 u phn tch c thnh tch cc tha s nguyn t v s phn tch ny

    l duy nht nu khng k n th t cc tha s. Kt qu sau y l mt

    s tng t ca nh l ny i vi a thc.

    1.2.8 nh l. Mi a thc dng chun bc dng c th phn tch c

    thnh tch cc a thc bt kh quy dng chun v s phn tch ny l duy

    nht nu khng k n th t cc nhn t.

    Chng minh. Trc ht, chng ta chng minh s tn ti phn tch bng

    quy np theo bc ca a thc. Gi s f(x) F [x] l a thc dng chunbc d > 0. Nu d = 1 th f(x) l bt kh quy nn s phn tch bt kh

    quy ca f(x) l f(x) = f(x), kt qu ng cho trng hp d = 1. Cho

    d > 1 v gi s kt qu ng cho cc a thc bc nh hn d. Nu

    f(x) bt kh quy th f(x) c s phn tch bt kh quy l f(x) = f(x).

    V th ta gi thit f(x) khng bt kh quy. Khi f(x) = g(x)h(x) vi

    deg g(x), deg h(x) < deg f(x). t g(x) = g(x)/ak vi ak l h s cao

    nht ca g(x). Khi ta c f(x) = g(x)(akh(x)). ng nht h s cao

    nht hai v ta c 1 = akbt, trong bt l h s cao nht ca h(x).

    t h(x) = akh(x). Khi f(x) = g(x)h(x) vi g(x), h(x) l cc

    a thc dng chun c bc nh hn d. Theo gi thit quy np, g(x) v

    h(x) phn tch c thnh tch cc a thc bt kh quy dng chun. V

    13S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 13

    th f(x) phn tch c thnh tch ca hu hn a thc bt kh quy dng

    chun.

    By gi ta chng minh tnh duy nht ca phn tch. Gi s f(x) c hai

    s phn tch thnh nhn t bt kh quy dng chun

    f(x) = p1(x)p2(x) . . . pn(x) = q1(x)q2(x) . . . qm(x).

    Ta chng minh bng quy np theo n rng n = m v sau mt php hon

    v ta c pi(x) = qi(x) vi mi i = 1, . . . , n. Cho n = 1. Khi ta c

    p1(x) = q1(x)q2(x) . . . qm(x). Suy ra p1(x)|q1(x)q2(x) . . . qm(x). Do p1(x)l bt kh quy nn p1(x) l c ca mt nhn t qi(x) no , khng mt

    tnh tng qut ta c th gi thit p1(x)|q1(x). Biu din q1(x) = p1(x)t1(x).V q1(x) bt kh quy nn t1(x) = a F . ng nht h s cao nht cahai v ca ng thc q1(x) = ap1(x) vi ch rng p1(x) v q1(x) l dng

    chun, ta c 1 = 1.a. Suy ra a = 1 v do p1(x) = q1(x). Num > 1 th

    1 = q2(x) . . . qm(x), iu ny l v l. Vy, kt qu ng cho n = 1. Cho

    n > 1. V p1(x)|q1(x)q2(x) . . . qm(x) v p1(x) l bt kh quy nn khngmt tnh tng qut ta c th gi thit p1(x)|q1(x). Li do q1(x) l bt khquy v p1(x), q1(x) u c dng chun nn tng t nh lp lun trn ta

    c p1(x) = q1(x). Gin c c hai v cho p1(x) ta c

    p2(x)p3(x) . . . pn(x) = q2(x)q3(x) . . . qm(x).

    Theo gi thit quy np ta c n 1 = m 1 v bng vic nh s li ccnhn t qi(x) ta suy ra pi(x) = qi(x) vi mi i = 2, . . . , n.

    1.3 Trng phn r ca a thc

    Trong tit ny, da vo tnh cht bt kh quy, chng ta ch ra rng vi mi

    a thc f(x) F [x], tn ti mt trng K ti thiu cha trng F v

    14S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 14

    cha tt c cc nghim ca f(x). Trng K c tnh cht trn c gi l

    trng phn r ca a thc f(x) trn F .

    1.3.1 nh ngha. Cho F v F l hai trng.

    (i) Mt tp con T ca F c gi l trng con ca F nu x1 Tvi mi 0 6= x T v x+y, xy,1 T vi mi x, y T. Ch rng tpcon T ca F l trng con ca F nu php cng v nhn ng kn trong

    T v T l mt trng vi hai php ton ny.

    (ii) Mt nh x : F F c gi l mt ng cu nu (1) = 1,(x+ y) = (x) + (y) v (xy) = (x)(y) vi mi x, y F .(iii) Mt ng cu : F F c gi l n cu nu l n nh.Trong trng hp ny (F ) l mt trng con ca F . V th ta ni F

    nhng c vo F v ta cng c th coi F l mt trng cha F .

    (iv) Mt ng cu : F F c gi l ton cu nu l ton nh.(v) Mt ng cu : F F c gi l ng cu nu l song nh.Trong trng hp ny ta ni F v F l ng cu vi nhau v ta c th

    ng nht hai trng F v F vi nhau.

    1.3.2 nh l. (Kronecker). Cho f(x) F [x] l mt a thc c bc dng.Khi tn ti mt trng ti thiu cha F v cha tt c cc nghim ca

    f(x). c bit, mi a thc trn mt trng u c trng phn r.

    Chng minh. K hiu f (x) l a thc dng chun ca f(x). V cc nghim

    ca f(x) cng l cc nghim ca f (x) nn ta c th gi thit f(x) c dng

    chun. Ta chng minh nh l bng quy np theo deg f(x) = n. Gi s

    n = 1. Khi f(x) = xa vi a F. Do a l nghim duy nht ca f(x)nn ta ch vic chn K = F. Gi thit rng n > 1 v nh l ng cho

    trng hp a thc bc nh hn n. Trc ht ta chng minh cho trng

    hp f(x) bt kh quy. t

    I = (f) = {g(x)f(x) | g(x) F [x]}.

    15S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 15

    D kim tra c I l mt ian ca F [x]. Vi mi g(x) F [x] ta t

    g(x) + I = {g(x) + h(x) | h(x) I}.

    Ta c th ch ra rng g(x) + I = h(x) + I nu v ch nu g(x)h(x) I.t K = {g(x) + I | g(x) F [x]}. Trc ht ta kim tra quy tc cng

    (g(x) + I) + (h(x) + I) = (g(x) + h(x)) + I

    l mt php ton trn K. Tht vy, nu g + I = g1 + I v h+ I = h1 + I

    th g g1 I v h h1 I. Do g g1 v h h1 l bi ca f.Suy ra (g + h) (g1 + h1) = (g g1) + (h h1) l bi ca f . V th(g + h) (g1 + h1) I hay (g + h) + I = (g1 + h1) + I. Suy ra quy tccng trn l mt php ton trn K. Hon ton tng t, ta c th ch ra

    rng quy tc nhn

    (g + I)(h+ I) = gh+ I

    l mt php ton trn K. D thy php cng v php nhn trn K c

    tnh cht kt hp, giao hon; Php nhn phn phi vi php cng; Phn t

    khng caK l 0+I; Phn t n v caK l 1+I; Phn t i xng ca

    g + I K l g + I K. Ta chng minh mi phn t khc 0 + I Ku c nghch o. Ly g + I K vi g + I 6= 0 + I. Khi g / I . Do g khng l bi ca f . V f bt kh quy nn gcd(f, g) = 1. V th ta

    c biu din 1 = f(x)p(x) + g(x)q(x) vi p(x), q(x) F [x]. Ch rngfp I . Do fp+ I = 0 + I . Suy ra

    1 + I = (fp+ gq) + I = (fp+ I) + (gq+ I) = gq+ I = (g+ I)(q+ I).

    Do g + I kh nghch trong K. Vy K lm thnh mt trng vi php

    cng v nhn trn. Xt nh x : F K cho bi (a) = a + I. Rrng l mt ng cu. Nu (a) = (b) vi a, b F th a+ I = b+ I.V th a b I. Suy ra a b l bi ca f(x). Nu a b 6= 0 th a b

    16S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 16

    l a thc c bc 0 nn n khng th l bi ca a thc f(x) bc dng,

    iu ny l v l. Do a b = 0. Suy ra a = b. V vy l n cu,do ta c th xem K l mt trng cha F . t = x + I K. Gis f(x) = xn + an1xn1 + . . .+ a1x+ a0. ng nht phn t a F viphn t a+ I K, khi trong trng K ta c

    f() = (x+ I)n + (an1 + I)(x+ I)n1 + . . .+ (a0 + I)

    = (xn + I) + (an1xn1 + I) + . . .+ (a0 + I)

    = (xn + an1xn1 + . . .+ a0) + I

    = f(x) + I = 0 + I.

    V vy l mt nghim ca a thc f(x) trong trng K. Do tn ti

    f1(x) K[x] sao cho f(x) = (x )f1(x), trong deg f1(x) = n 1.Theo gi thit quy np, tn ti mt trng K1 cha K v cha tt c cc

    nghim ca f1(x). Do K1 cha F v cha tt c cc nghim ca f(x).

    Gi K l giao ca tt c cc trng con ca K1 cha F v cha tt c

    cc nghim ca f(x). Khi K l trng ti thiu cha F v cha cc

    nghim ca f(x).

    Tip theo, ta chng minh cho trng hp f(x) kh quy. Trong trng

    hp ny, tn ti hai a thc dng chun bc dng g(x), h(x) F [x] saocho f(x) = g(x)h(x) v deg g, deg h < n = deg f. Theo gi thit quy

    np, tn ti mt trng K cha F v cha tt c cc nghim ca g(x). Ta

    coi h(x) l a thc vi h s trong K. Theo gi thit quy np, tn ti mt

    trng cha K1 v cha tt c cc nghim ca h(x). V th K1 l trng

    cha F v cha cc nghim ca f(x). Ly giao ca tt c cc trng con

    ca K1 cha F v cha cc nghim ca f(x), ta c trng ti thiu

    cha F v cc nghim ca f(x).

    1.3.3 V d. K hiu Q(i

    3, 3

    2) l giao ca cc trng con ca C cha

    17S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 17

    Q v cha cc phn t i

    3, 3

    2. Khi trng phn r ca f(x) = x3 2trn Q l Q(i

    3, 3

    2). Tht vy, d thy 3 nghim ca x3 2 l

    x1 =3

    2, x2 =3

    2(12

    +i

    3

    2), x3 =

    3

    2(12 i

    3

    2).

    Do x1, x2, x3 Q(i

    3, 3

    2). Ngc li, trng b nht cha Q v ccnghim x1, x2, x3 phi cha i

    3 v 3

    2.

    S dng nh l 1.3.2 v s tn ti trng phn r ca a thc, chng

    ta c th ch ra s phn t ca mt trng hu hn v s tn ti mt trng

    c hu hn phn t. Ch n gin sau y l rt c ch. Nu T l mt

    trng con ca trng F th F c cu trc l khng gian vc t trn T vi

    php cng l php cng ca F v tch v hng l php nhn cc phn t

    ca T vi cc phn t ca F.

    1.3.4 Mnh . Nu F l mt trng hu hn th s phn t ca F l ly

    tha ca mt s nguyn t.

    Chng minh. Vi mi s t nhin n, k hiu n1 = 1+ . . .+1 l tng ca n

    phn t 1 v (n)1 l tng ca n phn t 1. Quy c 01 = 0. Ta khngnh rng tn ti mt s nguyn dng k sao cho k1 = 0. Gi s ngc

    li, khi tng ng : Q F cho bi (n/m) = (n1)(m1)1 l ncu trng. Do Q c v hn phn t nn F c v hn phn t, iu nyl v l. Vy, tn ti s nguyn dng k k1 = 0. Gi p l s nguyn

    dng b nht c tnh cht p1 = 0. Ta chng minh p l s nguyn t. Tht

    vy, v p1 = 1 6= 0 nn p > 1. Nu p khng nguyn t th p = nm trong 1 < n,m < p. Suy ra 0 = p1 = (n1)(m1). Do n,m < p nn n1 6= 0v m1 6= 0. Do n1 v m1 kh nghch. Gi a, b F ln lt l nghcho ca n1 v m1. Khi

    0 = 0(ab) = (n1)a(m1)b = 1.1 = 1,

    18S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 18

    iu ny l v l. Vy p l s nguyn t. Tip theo ta khng nh m1 = 0

    nu v ch nu m pZ. Tht vy, nu m pZ th r rng m1 = 0. Num1 = 0 th ta vit m = ps + r vi s, r Z v 0 6 r < p, v do 0 = m1 = ps1 + r1 = r1. Do r < p nn r = 0 theo cch chn p, khng

    nh c chng minh. t

    T = {(n1)(m1)1 | n Z,m / pZ} F.

    D kim tra c T l trng con ca F . Ta chng minh T c ng p

    phn t. Tht vy, vi mi m / pZ, do p nguyn t nn gcd(m, p) = 1.Suy ra 1 = ms+ pt vi s, t Z. Suy ra

    1 = 1.1 = (m1)(s1) + pt1 = (m1)(s1).

    Do (m1)1 = s1 vi s Z. Suy ra T = {n1 | n Z}. Vi min Z, vit n = pt+ r vi 0 6 r < p ta c n1 = pt1 + r1 = r1. Do T = {n1 | 0 6 n < p}. Nu 0 6 n, n < p v n1 = n1 th (n n)1 = 0v do n n l bi ca p, do n = n. Suy ra T l trng con caF c ng p phn t. Ch rng F l khng gian vc t trn T . Gi q l

    s phn t ca F v d = dimT F l chiu ca Tkhng gian vc t F .Gi {e1, . . . , ed} l mt c s ca F. Khi mi phn t x F c biudin mt cch duy nht di dng x = a1e1 + . . .+ anen, trong ai Tvi mi i = 1, . . . , n. V th, s phn t ca F l q = pd.

    1.3.5 nh l. (Galois). Vi mi s nguyn t p v mi s nguyn dng

    d, tn ti mt trng c ng pd phn t.

    Chng minh. t q = pd. Do p nguyn t nn Zp l mt trng. Theonh l Kronecker, tn ti mt trng K cha Zp v cha cc nghimca a thc xq x. t E = { K | g() = 0}, tc l E l tp ttc cc nghim ca g(x) trong K. K hiu g(x) = qxq1 1 l o hm

    19S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 19

    ca g(x). V 1 Zp nn ta c p1 = 0. Do q1 = pd1 = 0. Suy rag(x) = (q1)xq1 1 = 1. Do c chung ln nht ca g(x) v g(x)bng 1. Suy ra g(x) khng c nghim bi trong K. iu ny cng c

    ngha l E c ng q phn t. Nh vy, nh l c chng minh nu ta

    ch ra E l mt trng. Nu p l th q l v do g(1) = 1 + 1 = 0v v th 1 E. Nu p chn th v p nguyn t nn p = 2. Suy ra

    g(1) = (1)q + 1 = 1 + 1 = 2.1 = p.1 = 0.

    Do 1 E. Vy trong mi trng hp ta u c 1 E. Choa, b E. Khi g(a) = g(b) = 0. Suy ra aq = a v bq = b. Suy ra(ab)q = ab. Do g(ab) = 0 v v th ab E. Ch rng

    (a+ b)q = aq + C1qaq1b+ . . .+ Cq1q ab

    q1 + bq = a+ b,

    trong Ckq l s t hp chp k ca q phn t. V q = pdv p nguyn

    t nn bng quy np ta d dng kim tra c Ckq l bi ca p vi mi

    k = 1, . . . , q 1. Do ta c Ckq aqkbk = (Ckq 1)aqkbk = 0 vi mik = 1, . . . , q 1. V th (a+ b)q = aq + bq. Theo trn ta c aq = a vbq = b. Do (a+ b)q (a+ b) = 0, v v th a+ b E. Cho 0 6= a EKhi aq = a. Do a 6= 0 nn nhn c hai v vi a1 ta c aq1 = 1.Suy ra aq2 l nghch o ca a trong E. Vy E l mt trng.

    T nh l trn ta suy ra cc tnh cht sau.

    1.3.6 V d. Tn ti trng c 81 phn t. Khng tn ti trng c 100

    phn t.

    20S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 2

    Mt s phng php xt tnh bt kh

    quy trn Q

    nh l c bn ca i s pht biu rng mi a thc bc dng vi h

    s phc lun c t nht mt nghim phc. Ch rng nu f(x) C[x] cnghim x = C th f(x) = (x )g(x) vi g(x) C[x]. V th nudeg f(x) 2 th f(x) c th phn tch c thnh tch ca hai a thc cbc thp hn. Do cc a thc bt kh quy trn C l v ch l cc athc bc nht. Gi s f(x) R[x]. Ch rng nu s phc = a + bil nghim ca f(x) vi / R th s phc lin hp = a bi cng lnghim ca f(x). V th f(x) chia ht cho (xabi)(xa+bi). R rng(xa bi)(xa+ bi) = x22ax+a2 + b2 R[x] v x22ax+a2 + b2khng c nghim thc. Do cc a thc bt kh quy trn R l v ch lcc a thc bc nht hoc a thc bc hai khng c nghim thc.

    Mc d bi ton xt tnh bt kh quy ca cc a thc trn C v trn R c gii quyt t khi ngi ta chng minh c nh l c bn ca

    i s (chng minh hon chnh u tin cho nh l c bn ca i s

    c a ra bi Gauss nm 1816), nhng bi ton xt tnh bt kh quy ca

    cc a thc trn Q cho n nay vn l bi ton m. Mc tiu ca chngny nhm trnh by mt s tiu chun mt a thc l bt kh quy trn

    Q.

    20

    21S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 21

    Gi s f(x) Q[x]. Ch rng f(x) l bt kh quy trn Q khi vch khi af(x) l bt kh quy vi mi 0 6= a Z. V th, bng vicnhn vi mu s chung ca cc h s ca f(x), ta c mt a thc vi

    h s nguyn m tnh bt kh quy trn Q ca n tng ng vi tnhbt kh quy ca f(x). Do ta ch cn xt tnh bt kh quy trn Q chocc a thc vi h s nguyn. T nay n ht chng ny, lun gi thit

    f(x) = anxn + . . .+ a1x+ a0 Z[x], trong an 6= 0 v n > 0.

    2.1 Nghim hu t v tnh bt kh quy trn Q

    Nh trnh by trong chng trc, iu kin mt a thc bc ln

    hn 1 kh quy trn Q l n c nghim trong Q. V vy, xt tnh khquy ca a thc, trong nhiu trng hp ta c th dng phng php tm

    nghim hu t. Trc ht chng ta a ra cch tm nghim hu t cho cc

    a thc vi h s nguyn.

    2.1.1 Mnh . Nu

    r

    sl phn s ti gin v l nghim hu t ca f(x)

    th r l c ca a0 v s l c ca an.

    Chng minh. Gi s

    r

    s Q trong r, s l cc s nguyn, s > 0 v

    (r, s) = 1. Nur

    sl nghim ca a thc f(x) th f(

    r

    s) = 0. Ta c

    0 = f(r

    s) = an(

    r

    s)n + an1(

    r

    s)n1 + . . .+ a1

    r

    s+ a0.

    Suy ra 0 = anrn + an1rn1s+ . . .+ a1rsn1 + a0sn. V th ta c

    anrn = (an1rn1s+ . . .+ a1rsn1 + a0sn).

    V phi ca a thc ny l bi ca s. V (r, s) = 1 nn s l c ca an

    Tng t ta c a0sn = (anrn + an1rn1s+ . . .+ a1rsn1). V phi caa thc ny l bi ca r. V (r, s) = 1 nn r l c ca a0.

    22S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 22

    2.1.2 H qu. Nghim hu t (nu c) ca f(x) = xn + . . .+ a1x+ a0 l

    nghim nguyn v s nguyn ny l c ca s hng t do.

    2.1.3 Mnh . Nu phn s ti gin

    r

    sl nghim ca f(x) th r msl c ca f(m) vi m l s nguyn bt k. c bit, (r + s) l c ca

    f(1) v (r s) l c ca f(1).

    Chng minh. Phn tch f(x) theo cc lu tha ca xm ta c

    f(x) = an(xm)n + bn1(xm)n1 + . . .+ b1(xm) + b0.

    Cc h s b0, b1, . . . , bn1 Z v m Z. Ta c f(m) = b0 v cho x = rsta c f(

    r

    s) = 0. Ch rng

    0 = f(r

    s) = an(

    r

    sm)n + bn1(r

    sm)n1 + . . .+ b1(r

    sm) + f(m).

    T ta c

    0 = an(rms)n + bn1(rms)n1s+ . . .+ b1(rms)sn1 + f(m)sn.

    Suy ra

    f(m)sn = {an(rms)n + bn1(rms)n1s+ . . .+ b1(rms)sn1}.

    V phi ca a thc l bi ca r ms. Do f(m)sn l bi ca r mshay r ms l c ca f(m).Trng hp c bit, vi m = 1 th r s l c f(1), m = 1 th r + sl c f(1).

    Sau y l mt s v d minh ha v vic xt tnh kh quy ca a thc

    bng phng php tm nghim hu t.

    2.1.4 V d. Xt tnh bt kh quy trn Q ca cc a thc sau.(i) 10x3 + 3x2 106x+ 21;

    23S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 23

    (ii) 9x3 + 6x2 8x+ 7;(iii) x3 x2 + x 6;(iv) 6x4 + 19x3 7x2 26x+ 12.

    Gii. (i) Gi s a thc f(x) = 10x3 + 3x2 106x + 21 c nghim hut

    r

    s, vi

    r

    sl phn s ti gin. Theo Mnh 2.1.1, r|21 v s|10. T suy ra r = 1,3,7,21 v s = 1,2,5,10. Ta tnh cf(1) = 72, f(1) = 120. Vy cc s hu t tho mn Mnh 2.1.3l 1

    2,1

    5,3, 3

    2,3

    5,7,7

    2,7

    5. Th li ta thy ch c

    1

    5, 3,7

    2l

    nghim ca f(x). Vy f(x) c nghim hu t, do n kh quy trn Q.(ii) xt tnh bt kh quy ca a thc f(x) = 9x3+6x28x+7 ta nhnhai v ca f(x) vi 3 ta c f(3x) = 27x3+18x224x+21. t y = 3xta c f(y) = y3+2y28y+21. Gi s f(y) c nghim hu t. V an = 1nn theo H qu 2.1.2, nghim hu t ca f(y) phi l nghim nguyn

    v r|21. Suy ra r = 1,3,7,21. Ta thy f(1) = 16, f(1) = 30.Vy ch c cc s 3,7 tho mn Mnh 2.1.3 nhng th li ta thyf(3) 6= 0, f(7) 6= 0. Vy a thc f(y) khng c nghim hu t. Suyra f(x) bt kh quy trn Q.(iii) Gi s a thc f(x) = x3x2+x6 c nghim hu t v nghim phi l nghim nguyn v an = 1. Cc c ca 6 l r = 1,2,3,6.Ta thy f(1) = 5 v f(1) = 9 nn ch c r = 2 tho mn Mnh 2.1.3. Th li ta thy rng f(2) = 0. Vy a thc f(x) c nghim hu t,

    do n kh quy.

    (iv) Gi s a thc f(x) = 6x4 +19x37x226x+12 c nghim hut

    r

    s, vi

    r

    sl phn s ti gin. Theo Mnh 2.1.1 th r|12 v s|6. Suyra r = 1,2,3,4,6,12 v s = 1,2,3,6. Ta tnh cf(1) = 4 v f(1) = 18. Do cc s hu t tho mn Mnh 2.1.3l

    1

    2,1

    3, 2,3. Th li ta thy f(1

    2) = 0 v f(3) = 0. Vy f(x) c

    24S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 24

    nghim hu t, do n kh quy trn Q.

    2.1.5 Ch . i vi a thc bc 4, ta khng th suy ra tnh bt khquy trn Q t vic kim tra a thc khng c nghim hu t. Tht vy, athc (x2 + 1)(x2 + 1) khng c nghim hu t, nhng n khng bt kh

    quy.

    2.2 Phng php dng B Gauss

    Trong tit ny, chng ta trnh by mt tiu chun bt kh quy trn Q thngqua tiu chun khng phn tch c trn Z[x].

    2.2.1 nh l. (B Gauss). Cho p(x) Z[x]. Nu p(x) = g(x)f(x) ls phn tch p(x) thnh tch ca hai a thc g(x), f(x) vi h s trong Qth p(x) cng phn tch c thnh tch ca hai a thc g(x), f(x) vi

    h s trong Z vi deg g(x) = deg g(x), deg f(x) = deg f(x). c bit,nu p(x) l kh quy trn Q th n phn tch c thnh tch ca hai athc vi h s nguyn c bc thp hn.

    chng minh nh l trn, chng ta cn nhc li khi nim a thc

    nguyn bn v mt tnh cht ca a thc nguyn bn.

    2.2.2 nh ngha. a thc f(x) Z[x] c gi l nguyn bn nu cchung ln nht ca cc h s ca f(x) l 1.

    2.2.3 B . Tch ca hai a thc nguyn bn l a thc nguyn bn.

    Chng minh. Gi s f(x) = g(x)h(x), trong

    g(x) = bnxn + . . .+ b1x+ b0

    h(x) = ckxk + . . .+ c1x+ c0.

    25S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 25

    l cc a thc nguyn bn. Vit f(x) = amxm + . . . + a1x + a0 Z[x].Nu f(x) khng nguyn bn th tn ti mt s nguyn t p sao cho n l

    c ca mi h s ca f . V h(x), g(x) l nguyn bn nn tn ti ch s

    b nht s sao cho bs khng l bi ca p v tn ti ch s t b nht sao cho

    ct khng l bi ca p. Ch rng

    as+t = bs+tc0 + bs+t1c1 + . . .+ bsct + bs1ct+1 + . . .+ b0ct+s.

    Theo cch chn s v t ta c bi, cj l bi ca p vi mi i > s v j > t. V

    as+t l bi ca p nn ta suy ra bsct l bi ca p, iu ny l v l vi cch

    chn bs v ct.

    By gi ta c th chng minh nh l 2.2.1.

    Chng minh nh l 2.2.1. Gi s p(x) Z[x] v p(x) = f(x)g(x) vif, g Q[x]. Ta c th vit f = af1 v g = bg1 trong a, b Q vf1, g1 Z[x] l cc a thc nguyn bn. Theo B 2.2.3, f1g1 Z[x]l a thc nguyn bn. R rng p = abf1g1 Z[x]. Ta chng minhab Z. Tht vy, gi s ab / Z. Khi ab = r

    svi r, s Z, s > 1 v

    gcd(r, s) = 1. Vit f1g1 = anxn + . . .+ a1x+ a0. V f1g1 l nguyn bn

    nn gcd(an, an1, . . . , a1, a0) = 1. V p(x) Z[x] nnrans, . . . ,

    ra1s,ra0s Z.

    Suy ra s l c chung ca an, . . . , a1, a0, iu ny l v l. Vy, ab Z.Do p = (abf1)g1. t f = abf1 v g = g1. Khi p = fg l s

    phn tch ca p thnh tch ca hai a thc vi h s nguyn f v g vi

    deg f = deg f v deg g = deg g.

    Di y l mt s v d minh ha vic xt tnh bt kh quy trn Q cacc a thc bng vic s dng B Gauss.

    26S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 26

    2.2.4 V d. Xt tnh bt kh quy ca a thc f(x) = x4 + 3x3 + x2 + 3

    trn Q.

    Gii. Ta chng minh a thc ny bt kh quy trn Q. Gi s ngc li, khi theo nh l 2.2.1, f(x) c s phn tch thnh tch g(x)h(x) trong

    g(x) Z[x] c bc 1 hoc bc 2, h(x) Z[x] c bc 3 hoc bc 2. V hs cao nht ca f(x) l 1 nn ta c th gi thit h s cao nht ca g(x)

    v h(x) cng l 1. Nu g(x) bc 1 th theo H qu 2.1.2 f(x) c nghim

    nguyn l 3 hoc 3. Tuy nhin, thay vo ta c f(3) 6= 0 v f(3) 6= 0.Do g(x) c bc 2 v v th h(x) c bc 2. Vit g(x) = x2 + ax+ b v

    h(x) = x2 + cx+ d vi a, b, c, d Z. ng nht h s hai v ca ngthc f = gh ta c

    bd = 3, bc+ ad = 0, ac+ d+ b = 1, c+ a = 3.

    V bd = 3 v vai tr ca b, d l nh nhau nn khng mt tnh tng qut ta

    c th gi thit b = 1, d = 3 hoc b = 1, d = 3. Nu b = 1, d = 3 thc + 3a = 0, ac = 3, a + c = 3. Suy ra a = 3

    2/ Z, v l. Nu b = 1v d = 3 th c 3a = 0, ac = 5, c+ a = 3. Suy ra a = 3

    2/ Z, v l.Nh vy, f(x) khng phn tch c thnh tch ca hai a thc bc nh

    hn 4 vi h s nguyn. Suy ra f(x) bt kh quy trn Q.

    2.2.5 V d. Xt tnh bt kh quy ca a thc f(x) = x5 + x3 + x2 + 5

    trn Q.

    Gii. Ta s chng minh f(x) l bt kh quy trn Q. Tht vy, gi s f(x)kh quy trnQ. Khi , theo nh l 2.2.1 ta c f(x) = g(x)h(x) trong g(x) Z[x] c bc 1 hoc bc 2, h(x) Z[x] c bc 4 hoc bc 3. TheoH qu 2.1.2, cc nghim hu t ca f(x) ch c th l 5. Tuy nhinf(5) 6= 0 v f(5) 6= 0. Do g(x) khng th c bc 1. Vy g(x) c bc

    27S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 27

    2 v h(x) c bc 3. Vit g(x) = x2 + ax+ b v h(x) = x3 + cx2 + dx+ e

    vi a, b, c, d, e Z. ng nht h s hai v ca ng thc f = gh tac

    a+ c = 0, b+ d+ ac = 1, bc+ ad+ e = 1, ae+ bd = 0, be = 5.

    V be = 5 nn cc kh nng sau xy ra:

    Trng hp 1: b = 1, e = 5. Khi

    a+ c = 0, d+ ac = 0, c+ ad = 4, 5a+ d = 0.

    Suy ra hoc a = 5, c = 5, d = 95/ Z, v l; hoc a = 0, c = 0 thay vo

    c+ ad = 4, v l.Trng hp 2: Nu b = 1, e = 5. Khi

    a+ c = 0, d+ ac = 2,c+ ad = 6,5a d = 0.

    Suy ra a =517

    2/ Z, v l.Trng hp 3: Nu b = 5, e = 1. Khi

    a+ c = 0, d+ ac = 4, 5c+ ad = 0, a+ 5d = 0.

    Suy ra d =1401

    50/ Z, v l.Trng hp 4: Nu b = 5, e = 1. Khi

    a+ c = 0, d+ ac = 6,5c+ ad = 2, a+ 5d = 0.

    Suy ra d =25585

    10/ Z, v l.Vy khng c cc s nguyn a, c, d no tho mn cc trng hp trn. V

    vy f(x) khng phn tch c thnh tch ca hai a thc bc nh hn 5

    vi h s nguyn. Do n bt kh quy trn Q.

    28S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 28

    2.3 Phng php dng tiu chun Eisenstein

    2.3.1 nh l. [Tiu chun Eisenstein]. Gi s

    f = anxn + an1xn1 + . . .+ a1x+ a0

    l a thc vi h s nguyn sao cho c mt s nguyn t p tho mn cc

    tnh cht

    (i) p khng l c ca h s cao nht an.

    (ii) p l c ca cc h s cn li.

    (iii) p2 khng l c ca h s t do a0.

    Khi f l bt kh quy trn Q.

    Chng minh. Gi s f khng bt kh quy trn Q. Theo nh l 2.2.1 tac th biu din

    f = gh = (b0 + b1x+ . . .+ bmxm)(c0 + c1x+ . . .+ ckx

    k),

    trong g, h Z[x] vi deg g = m < n v deg h = k < n. Do p l cca a0 = b0c0 nn p l c ca b0 hoc c0. Li do p

    2khng l c ca a0

    nn trong hai s b0 v c0, c mt v ch mt s chia ht cho p. Gi thit c0

    chia ht cho p. Khi b0 khng chia ht cho p. V an = bmck v an khng

    chia ht cho p nn bm v ck u khng chia ht cho p. Gi r l ch s b

    nht sao cho cr khng l bi ca p. Ch rng s r nh vy lun tn ti

    v ck khng l bi ca p. Trc ht ta xt trng hp r < n. Khi p l

    c ca ar. V b0cr = ar (b1cr1 + b2cr2 + . . . + brc0) vi ch rngcc s c0, . . . , cr1 u l bi ca p nn b0cr l bi ca p. iu ny l v

    l v c hai s b0 v cr u khng l bi ca p. Xt trng hp r = n. Khi

    n = r 6 k 6 n. Suy ra k = n, v l. Vy f l bt kh quy trn Q.

    Chng ta cng dng tiu chun Eisenstein kim tra tnh cht bt kh

    quy ca cc a thc sau y gi l a thc chia ng trn: Cho p l s

    29S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 29

    nguyn t. a thc chia ng trn th p l

    p(x) = xp1 + . . .+ x+ 1.

    2.3.2 H qu. Vi mi s nguyn t p, a thc chia ng trn th p l

    bt kh quy trn Q.

    Chng minh. Ch rng a thc chia ng trn p(x) l bt kh quy

    khi v ch khi p(x+ 1) l bt kh quy. Ta c

    p(x+ 1) =(x+ 1)p 1

    x.

    Suy ra

    p(x+ 1) = xp1 + C1px

    p2 + . . .+ Ckpxpk1 + . . .+ Cp2p x+ p,

    trong Ckp l s t hp chp k ca p phn t. Do p nguyn t nn Ckp l

    bi ca p vi mi k = 1, . . . , p 2. V th p(x+ 1) l bt kh quy theotiu chun Eisenstein.

    H qu n gin sau y ch ra rng vi mi s t nhin n lun tn ti

    cc a thc bt kh quy trn Q bc n.

    2.3.3 H qu. Cho a = pn11 pn22 . . . p

    nkk l s phn tch tiu chun ca s t

    nhin a thnh tch cc tha s nguyn t. Nu nj = 1 vi mt s j no

    , 1 6 j 6 k, th xn a l bt kh quy vi mi n.

    Chng minh. Theo gi thit, a l bi ca s nguyn t pj nhng khng l

    bi ca p2j . V th theo tiu chun Eisenstein ta c kt qu.

    2.3.4 V d. Theo tiu chun Eisenstein vi p = 2 ta suy ra a thc

    x54x+2 l bt kh quy trn Q. Ch rng tnh cht bt kh quy ca athc ny khng d kim tra bng B Gauss trong nh l 2.2.1. Ngc

    li, tnh bt kh quy ca a thc trong V d 2.2.5 c kim tra bng

    30S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 30

    vic dng B Gauss, nhng khng d kim tra tnh bt kh quy ca a

    thc ny bng tiu chun Eisenstein.

    2.3.5 V d. Xt tnh bt kh quy trn Q ca cc a thc sau.(i) x10 + 50;

    (ii) 5x11 9x4 + 12x3 + 36x+ 6;(iii) x4 8x3 + 10x2 12x+ 3.

    Gii. (i) D thy vi p = 2 a thc x10 + 50 bt kh quy trn Q (theo tiuchun Eisenstein).

    (ii) a thc 5x11 9x4 + 12x3 + 36x+ 6 bt kh quy trn Q theo tiuchun Eisenstein vi p = 3.

    (iii) t x = y + 3 ta c

    f(x) = x4 8x3 + 10x2 12x+ 3 = y4 + 4y3 8y2 60y 78 = f(y).

    a thc f(y) bt kh quy trn Q theo tiu chun Eisenstein vi p = 2. Do suy ra a thc f(x) = x4 8x3 + 10x2 12x+ 3 bt kh quy trn Q.

    2.4 Rt gn theo mun mt s nguyn t

    Cho p l mt s nguyn t. K hiu Zp = {a|a Z}, trong a = b Zpkhi v ch khi a b chia ht cho p. Ta c th kim tra c Zp l mttrng vi php cng a+ b = a+ b v php nhn ab = ab. Phn t khng

    l 0, phn t n v l 1. Trng Zp c p phn t.Trong tit ny, chng ta trnh by mt phng php xt tnh bt kh

    quy trn Q ca a thc bng cch da vo B Gauss v xt n trntrng Zp vi p l mt s nguyn t ph hp. Gi s

    f(x) = anxn + . . .+ a1x+ a0 Z[x].

    31S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 31

    Vi mi s nguyn t p, k hiu ai Zp l s nguyn ai mun p (haylp thng d ca ai theo mun p). K hiu

    f(x) := anxn + . . .+ a1x+ a0 Zp[x].

    2.4.1 nh l. Cho f(x) Z[x]. Nu tn ti mt s nguyn t p sao chodeg f(x) = deg f(x) v f(x) bt kh quy trn Zp th f(x) bt kh quytrn Q.

    Chng minh. Gi s f(x) bt kh quy trong Zp[x] v deg f(x) = deg f(x).Khi deg f(x) > 0. Suy ra deg f(x) > 0. Ta cn chng minh f(x) bt

    kh quy trn Q. Gi s f(x) khng bt kh quy trn Q. Theo B Gauss, f(x) c s phn tch f(x) = g(x)h(x) trong g(x), h(x) Z[x],deg f(x) > deg g(x) v deg f(x) > deg h(x). Ch rng vi mi s

    nguyn a, b ta c ab = a b v a+ b = a + b. V th ta c th kim

    tra c f(x) = g(x)h(x). Do deg f(x) = deg g(x) + deg h(x). V

    deg f(x) = deg f(x), deg g(x) deg g(x) v deg h(x) deg h(x) nnta suy ra deg g(x) = deg g(x) v deg h(x) = deg h(x). V th f(x) phn

    tch c thnh tch ca hai a thc g(x), h(x) c bc thp hn, mu thun

    vi tnh bt kh quy trn Zp ca f(x).

    2.4.2 Ch . Gi thit deg f(x) = deg f(x) trong nh l 2.4.1 l cn

    thit. Chng hn, xt a thc f(x) = 5(x 1)9 + (x 1) Z[x]. athc ny khng bt kh quy trn Q v n c c thc s l x 1. Ta cf(x) = x 1 Z5[x]. V f(x) c bc 1 nn r rng n l bt kh quytrn Z5.

    2.4.3 V d. Xt tnh bt kh quy trn Q ca cc a thc sau.(i) 5x2 + 10x+ 4;

    (ii) 3x3 + 7x2 + 10x 5;(iii) 11x4 5x3 + 21x2 9x+ 6.

    32S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 32

    Gii. (i) a thc f(x) = 5x2 + 10x + 4 Z[x]. Chn p = 3, ta cf(x) = 2x2 + x + 1 Z3[x]. a thc f(x) khng c nghim trong Z3nn l bt kh quy. V deg f(x) = 2 = deg f(x) nn theo nh l 2.4.1

    a thc f(x) bt kh quy trn Q.(ii) Rt gn trong Z2[x], a thc f(x) = 3x3 + 7x2 + 10x 5 Z[x]tr thnh f(x) = x3 + x2 1 Z2[x]. a thc f(x) bt kh quy trn Z2v n khng c nghim trong Z2. V deg f(x) = 3 = deg f(x) nn theonh l 2.4.1 a thc f(x) bt kh quy trn Q.(iii) Rt gn trn Z5, a thc f(x) = 11x45x3+21x29x+6 Z[x]tr thnh f(x) = x4 +x2 +x+ 1 Z5[x]. D thy f(x) khng c nghimtrn Z5 nn n khng c nhn t bc mt. Gi s nu f(x) kh quy trongZ5[x] th f(x) = (x2 + ax+ b)(x2 + cx+ d) vi a, b, c, d Z5. ng nhth s hai v ca ng thc ny ta c

    a+ c = 0, b+ ac+ d = 1, ad+ bc = 1, bd = 1.

    V bd = 1 v vai tr ca b, d l nh nhau nn khng mt tnh tng qut ta c

    th gi thit (b, d) = (1, 1) hoc (b, d) = (2, 3) hoc (b, d) = (4, 4). Nu

    (b, d) = (1, 1) th a+ c = 0, ac = 1, a+ c = 1, v l. Nu (b, d) = (2, 3)th a + c = 0, ac = 4, 3a + 2c = 1. Suy ra a = 1, c = 1 nhng thayvo phng trnh ac = 4 ta c 1 = 4, v l. Nu (b, d) = (4, 4)th a + c = 0, ac = 7, a + c = 1

    4, v l. Vy f(x) bt kh quy trn Z5.V deg f(x) = 4 = deg f(x) nn theo nh l 2.4.1 a thc f(x) bt kh

    quy trn Q.

    2.4.4 Ch . Peter Cameron s dng B Gauss v dng phng

    php rt gn theo mun mt s nguyn t a ra mt chng minh

    khc cho tiu chun Eisenstein nh sau: Gi s f = gh, trong g, h l

    cc a thc vi h s nguyn v deg g = m < n, deg h = k < n. Gi

    at, t = 0, 1, . . . , n; bi, i = 0, 1, . . . ,m v cj, j = 0, 1, . . . , k tng ng l

    33S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 33

    cc h s ca f , g v h. V cc h s a0, . . . , an1 ca f u chia ht cho

    p nn ta c f(x) = anxn. Ch rng n = m + k v an = bmck. Do an

    khng l bi ca p theo gi thit nn bm v ck u khng l bi ca p. V

    th

    g(x) = bmxm + a thc bc thp hn Zp[x],

    h(x) = ckxk + a thc bc thp hn Zp[x].

    Ta c th kim tra c f(x) = g(x)h(x). Do anxn = g(x)h(x). Ch

    rng anxnch c duy nht mt c bt kh quy l x. V th g(x) v

    h(x) cng ch c ng mt c bt kh quy l x. Do g(x) = bmxmv

    h(x) = ckxk. Do bi = 0 v cj = 0 vi mi i < m v j < k. c bit,

    c0 v b0 u chia ht cho p. Do a0 chia ht cho p2, v l.

    34S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Chng 3

    Tnh bt kh quy trn trng Zp

    Mc ch ca chng ny l xt tnh bt kh quy ca cc a thc trn

    trng Zp vi p l mt s nguyn t. chng minh cc kt qu trongchng ny, ngoi vic s dng nh l Kronecker v s tn ti trng

    phn r ca mt a thc, chng ta cn chun b thm mt s kt qu v l

    thuyt nhm, c bit l nhm nhn Zp.

    3.1 Kin thc chun b v nhm nhn Zp

    3.1.1 nh ngha. Nhm l mt tp G cng vi mt php ton (k hiu

    theo li nhn) tho mn cc iu kin

    (i) Php ton c tnh kt hp: a(bc) = (ab)c vi mi a, b, c G.(ii) G c n v: e G sao cho ex = xe = x vi mi x G.(iii) Mi phn t caG u kh nghch: Vi mi x G, tn ti x1 Gsao cho xx1 = x1x = e.

    Mt nhm G c gi l nhm giao hon (hay nhm Abel) nu php

    ton l giao hon, tc l ab = ba vi mi a, b G. Nu G c hu hnphn t th s phn t ca G c gi l cp ca G. Nu G c v hn

    phn t th ta ni G c cp v hn.

    3.1.2 V d. Cho m > 1 l mt s nguyn. Vi a, b Z, ta nh ngha34

    35S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 35

    a = b nu v ch nu a b chia ht cho m. K hiu Zm = {a | a Z} ltp cc s nguyn munm (hay tp cc lp thng d theo munm). K

    hiu Zm = {a Zm | (a,m) = 1} l tp cc s nguyn mun m nguynt cng nhau vi m. Khi Zm vi php nhn a b = ab l mt nhm giaohon cp (m), trong l hm Euler, tc l (1) = 1 v khi m > 1

    th (m) l s cc s t nhin nh hn m v nguyn t cng nhau vi m.

    Phn t n v ca Zm l 1. R rng nu m l s nguyn t th cp caZm l m 1.

    3.1.3 nh ngha. Tp con H ca mt nhm G c gi l nhm con ca

    G nu e H , a1 H v ab H vi mi a, b H.

    Cho G l mt nhm vi php ton k hiu theo li nhn. Cho a G.t (a) = {an | n Z}. Khi (a) l nhm con ca G. Ta gi (a) lnhm con xyclic sinh bi a. Cp ca nhm con (a) c gi l cp ca

    phn t a.

    3.1.4 B . Cho G l mt nhm vi n v e. Vi mi a G, cc phtbiu sau l tng ng

    (i) a c cp n.

    (ii) n l s nguyn dng b nht sao cho an = e.

    (iii) an = e v nu ak = e th k l bi ca n vi mi k Z.

    Chng minh. (i)(ii). Trc ht ta khng nh tn ti mt s nguyndng k sao cho ak = e. Gi s ngc li, vi mi cp s t nhin k < k

    ta c akk 6= e. Suy ra ak 6= ak. iu ny chng t (a) c cp v hn,v l vi gi thit (i). Do , tn ti nhng s nguyn dng k sao cho

    ak = e. Gi r l s nguyn dng b nht c tnh cht ar = e. Ta thy

    rng cc phn t e, a, a2, . . . , ar1 l i mt khc nhau. Tht vy, nu

    ai = aj vi 0 6 i 6 j < r th aji = e v 0 6 j i < r, do theo cch

    36S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 36

    chn ca r ta c i = j. By gi ta chng minh G = {e, a, a2, . . . , ar1}.R rng G {e, a, a2, . . . , ar1}. Cho b G. Khi b = ak vi k Z.Vit k = rq + s trong q, s Z v 0 6 s 6 r 1. Ta c

    b = ak = arq+s = (ar)qas = as {e, a, a2, . . . , ar1}.

    V th G = {e, a, a2, . . . , ar1} l nhm cp r. Suy ra r = n v (ii) cchng minh.

    (ii)(iii). Gi s ak = e. Vit k = nq + r vi 0 6 r < n. V an = enn e = ak = anqar = ar. Theo cch chn n ta phi c r = 0, suy ra k

    chia ht cho n.

    (iii)(i). Gi r l s nguyn dng b nht sao cho ar = e. Theo (iii),r l bi ca n. Do n l s nguyn dng b nht tha mn an = e.

    Tng t nh chng minh (i)(ii) ta suy ra cp ca a l n.

    3.1.5 V d. Xt nhm nhn Z7. Cp ca Z7 l (7) = 6. Nhm conxyclic sinh bi 2 l (2) = {1, 2, 4}. Do cp ca 2 trong nhm nhn Z7l 3. Ch rng 3 l s nguyn dng b nht tha mn (2)3 = 1 Z7.V th theo b trn ta cng suy ra cp ca 2 l 3.

    3.1.6 nh ngha. Cho H l nhm con ca G vi php ton k hiu theo

    li nhn. Vi a G, k hiu Ha = {ha | h H}. Ch rng Ha = Hbnu v ch nu ab1 H. Ta gi Ha l lp ghp tri ca H trong G ngvi phn t a. Khi H ch c hu hn lp ghp tri th s cc lp ghp tri

    ca H c gi l ch s ca H trong G.

    3.1.7 nh l. (Lagrange). Trong mt nhm hu hn, cp v ch s ca

    mt nhm con l c ca cp ca ton nhm.

    Chng minh. Gi s G l nhm c cp n v H l nhm con ca G c

    cp m. Vi mi a G ta c a = ea Ha. V th, mi phn t ca G

    37S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 37

    u thuc mt lp ghp tri ca H. Gi s Ha Hb 6= . Khi tn tih, h H sao cho ha = hb. Suy ra a = h1hb. Cho xa Ha, trong x H. Khi xa = (xh1h)b Hb. Suy ra Ha Hb. Tng t,Hb Ha v do Ha = Hb. Vy hai lp ghp tri bt k ca H nukhc nhau th phi ri nhau. Vi mi a G, r rng nh x f : H Haxc nh bi f(h) = ha l mt song nh. V th mi lp ghp tri ca H

    u c ng m phn t. Gi ch s ca H l s. T cc lp lun trn ta suy

    ra n = sm. V th s v m u l c ca n.

    3.1.8 V d. Xt nhm nhn Z7. Cp ca Z7 l 6. Cp ca nhm con(2) = {1, 2, 4} l 3. Theo chng minh nh l Lagrange, ch s ca nhmcon {1, 2, 4} l 6 : 3 = 2.

    3.2 Tnh bt kh quy trn trng Zp

    Trong sut tit ny, lun gi thit p l mt s nguyn t. Khi Zp lmt trng vi php cng v php nhn cc s nguyn mun p. thun

    tin, cc phn t ca Zp vn c k hiu nh cc s nguyn, trong tahiu hai phn t a, b Zp l bng nhau nu v ch nu a b l bi ca p.Gi s f(x) l a thc vi h s nguyn. Coi f(x) nh a thc trong

    Zp[x]. Trong trng hp khi bc ca f(x) khng ln v p l s nguyn tnh th ta c th kim tra tnh bt kh quy ca f(x) trn Zp trc tip tnh ngha a thc bt kh quy. Sau y l mt v d minh ha.

    3.2.1 V d. a thc x4 + x+ 1 l bt kh quy trn Z2.

    Chng minh. Gi s f(x) = x4 + x + 1 khng bt kh quy trn Z2. Vf(x) khng c nghim trong Z2 nn n khng c nhn t bc nht. V thn phn tch c thnh tch ca hai a thc bc hai: f(x) = g(x)h(x)

    vi g(x), h(x) Z2[x] v deg g(x) = deg h(x) = 2. Cc a thc bc hai

    38S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 38

    trong Z2[x] l x2, x2 + x, x2 + 1, x2 + x+ 1. D thy a thc bc hai duynht trong Z2[x] khng c nghim trong Z2 l x2 + x+ 1. V f(x) khngc nghim trong Z2 nn g(x) v h(x) cng khng c nghim trong Z2.Do g(x) = h(x) = x2 + x+ 1. R rng x4 + x+ 1 khng chia ht cho

    x2 + x + 1, tc l f(x) khng chia ht cho g(x), iu ny l v l. Vy,

    x4 + x+ 1 l bt kh quy trn Z2.

    Trong trng hp tng qut, khi p l s nguyn t bt k, vic kim tra

    tnh bt kh quy trn trng Zp nhn chung khng thc hin c. Mcch ca tit ny l s dng nh l Kronecker v trng phn r (nh

    l 1.3.2) v nh l Lagrange trong l thuyt nhm (nh l 3.1.7) xt

    tnh bt kh quy ca a thc trn Zp trong mt s trng hp c bit.

    3.2.2 Mnh . a thc x2 + 1 l bt kh quy trn Zp vi mi s nguynt p tha mn p 3(mod 4).Chng minh. Cho p l s nguyn t tha mn p 3(mod 4). Gi s x2+1khng bt kh quy trn Zp. Khi x2 + 1 phn tch c thnh tch cahai a thc bc 1. Do x2 + 1 c nghim Zp. V th 2 = 1.Suy ra 4 = 1. Do p 3(mod 4) nn p 6= 2. V th 1 6= 1 Zp. Suyra 6= 1 v 2 6= 1. Ta khng nh 3 6= 1. Tht vy, nu 3 = 1 th2 = 1. Do = 1 hay = 1. iu ny l v l. Vy n 6= 1 vimi n = 1, 2, 3 v 4 = 1. Ch rng 6= 0 v 0 khng l nghim cax2 + 1. Do Zp. Theo B 3.1.4, cp ca phn t trong nhmnhn Zp l 4. V p l s nguyn t nn cp ca nhm nhn Zp l p 1.Theo nh l Lagrange, cp ca l c ca cp ca nhm nhn Zp. Do 4 l c ca p1. T gi thit ta ta c p1 ng d vi 2 theo mun4. iu ny l v l. Vy x2 + 1 l bt kh quy trn Zp.

    3.2.3 Mnh . a thc x2 + x + 1 l bt kh quy trn Zp vi mi snguyn t p tha mn p 2(mod 3).

    39S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 39

    Chng minh. Cho p l s nguyn t tha mn p 2(mod 3). Gi sf(x) = x2 + x + 1 khng bt kh quy trn Zp. Khi f(x) l tch cahai a thc bc 1. Do f(x) c nghim Zp. Ch rng 0 khng lnghim ca f(x). V th 6= 0 v do d Zp. V

    x3 1 = (x 1)(x2 + x+ 1) = (x 1)f(x),

    v v l nghim ca f(x) nn l nghim ca x3 1. Suy ra 3 = 1.Ta khng nh 1 khng l nghim ca f(x). Tht vy, nu 1 l nghim

    ca f(x) th 1 + 1 + 1 = 0 Zp v do 3 l bi ca p. Tuy nhin,p 2(mod 3). iu ny l v l. Vy 1 khng l nghim ca f(x) v do 6= 1. Nu 2 = 1 th 1 = 3 = 2 = , iu ny l v l. Nhvy, n 6= 1 vi n = 1, 2 v 3 = 1. Theo B 3.1.4, cp ca trongnhm nhn Zp l 3. Ch rng Zp c cp l p 1 ng d vi 1 theomun 3. Theo nh l Lagrange, 3 l c ca p 1. iu ny v l. Do, x2 + x+ 1 l a thc bt kh quy trn Zp.

    3.2.4 Mnh . a thc f(x) = x4 + x3 + x2 + x+ 1 l bt kh quy trn

    Zp vi mi s nguyn t p tha mn p 6= 5 v p 6 1(mod 5).

    Chng minh. Cho p l s nguyn t tha mn p 6= 5 v p 6 1(mod 5).Theo nh l 1.3.2 (Kronecker), tn ti mt trng K cha Zp v chacc nghim ca f(x). Gi l mt nghim ca f(x). R rng 0 khng l

    nghim ca f(x), v th 6= 0. Khng nh 1: n 6= 1 vi mi n = 1, 2, 3, 4 v 5 = 1. Tht vy, rrng x5 1 = (x 1)(x4 + x3 + x2 + x+ 1) = (x 1)f(x). Do lnghim ca x5 1. Suy ra 5 = 1. Nu = 1 th 5 = 0 Zp v do 5 l bi ca p, iu ny l mu thun vi gi thit p 6= 5. Suy ra 6= 1.Nu 2 = 1 th 1 = 5 = (2)2 = , iu ny l v l. Nu 3 = 1

    th 1 = 5 = 32 = 2, v l. Nu 4 = 1 th 1 = 5 = 4 = , v

    40S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 40

    l. Nh vy, n 6= 1 vi mi n = 1, 2, 3, 4 v 5 = 1. Khng nh cchng minh.

    Khng nh 2: f(x) khng c nhn t bc nht trong Zp[x]. Tht vy,gi s f(x) c nhn t bc nht. Khi f(x) c nghim Zp. V 6= 0nn Zp. Theo Khng nh 1, n 6= 1 vi mi n = 1, 2, 3, 4 v 5 = 1.V th, theo B 3.1.4, cp ca trong nhm nhn Zp l 5. Theo nhl Lagrange, 5 l c ca cp ca Zp. T gi thit, Zp c cp p 1 khngchia ht cho 5. iu ny l v l.

    Khng nh 3: f(x) khng c nhn t bc hai trong Zp[x]. Thtvy, gi s f(x) c nhn t bc hai. Khi f(x) = q(x)r(x), trong

    q(x), r(x) Zp[x] v deg q(x) = deg r(x) = 2. Ch rng q(x), r(x) lbt kh quy trn Zp v nu ngc li th q(x) hoc r(x) c nhn t bcnht v do f(x) c nhn t bc nht, iu ny mu thun vi Khng

    nh 2. Do l nghim ca f(x) nn n l nghim ca q(x) hoc r(x).

    Khng mt tnh tng qut, ta gi thit l nghim ca q(x). t F = Zpv T = {a + b | a, b Zp}. R rng php cng ng kn trong T .Cho u = a + b, v = c + d T. Vit q(x) = a0 + a1x + a2x2 via0, a1, a2 Zp. Do l nghim ca q(x) nn a0 + a1 + a22 = 0. Lido q(x) c bc hai nn a2 6= 0. V th 2 = a12 (a0 + a1). Do

    uv = ac+ bd2 + (ad+ bc)

    = ac bda0a12 + (ad+ bc bda1a12 ) T.

    V th T ng kn vi php cng v php nhn. D kim tra c T l

    mt trng con ca trng K. Xt T nh Fkhng gian vc t. R rng{1, } l mt h sinh ca Fkhng gian vc t T . Gi s a.1 + b = 0vi a, b F . Nu b = 0 th a = 0. Nu b 6= 0 th = ab1 F = Zp,v l vi Khng nh 2. Do {1, } l mt c s ca Fkhng gianvc t T , v v th chiu ca khng gian ny l 2. Do F c p phn t v

    41S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 41

    dimF T = 2 nn T c p2phn t. Suy ra nhm nhn T = T \ {0} c cpl p2 1 = (p 1)(p + 1). V 6= 0 nn T . Theo Khng nh 1ta c n 6= 1 vi mi n = 1, 2, 3, 4 v 5 = 1. V th, theo B 3.1.4,cp ca trong nhm nhn T l 5. Theo nh l Lagrange, 5 l c ca

    (p 1)(p+ 1). V p 6 1(mod 5) theo gi thit nn 5 khng l c ca(p 1)(p+ 1), v l. Vy f(x) bt kh quy trn Zp.

    3.2.5 Mnh . a thc f(x) = x6 + x5 + x4 + x3 + x2 + x + 1 l bt

    kh quy trn Zp vi mi s nguyn t p 3(mod 7) hoc p 5(mod 7).

    Chng minh. Cho p 3(mod 7) hoc p 5(mod 7) vi p l s nguynt. Theo nh l 1.3.2 (Kronecker), tn ti mt trng K cha Zp v chatt c cc nghim ca f(x). Gi K l mt nghim ca f(x). R rng0 khng l nghim ca f(x), v th 6= 0. Khng nh 1: n 6= 1 vi mi n = 1, 2, 3, 4, 5, 6 v 7 = 1. Thtvy, r rng x7 1 = (x 1)f(x). Do l nghim ca x7 1. Suy ra7 = 1. Nu = 1 th 7 = 0 Zp v do 7 l bi ca p, iu ny lmu thun vi gi thit v p. Nu 2 = 1 th 1 = 7 = (2)3 = , iu

    ny l v l. Nu 3 = 1 th 1 = 7 = (3)2 = , v l. Nu 4 = 1 th

    1 = 7 = 43 = 3, v l. Nu 5 = 1 th 1 = 7 = 52 = 2, v

    l. Nu 6 = 1 th 1 = 7 = 6 = , v l. Nh vy, n 6= 1 vi min = 1, 2, 3, 4, 5, 6 v 7 = 1.

    Khng nh 2: f(x) khng c nhn t bc nht trong Zp[x]. Tht vy,nu f(x) c nhn t bc nht th f(x) c nghim trong Zp. TheoKhng nh 1, n 6= 1 vi mi n = 1, 2, 3, 4, 5, 6 v 7 = 1. V 6= 0 nn Zp. Do cp ca trong nhm nhn Zp l 7. Theo gi thit, Zp ccp p 1, trong p 1 ng d vi 2 theo mun 7 hoc ng d vi4 theo mun 7. Theo nh l Lagrange, 7 l c ca p 1, iu ny lv l.

    42S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 42

    Khng nh 3: f(x) khng c nhn t bc hai trong Zp[x]. Tht vy,gi s f(x) c nhn t q(x) Zp[x] bc hai. Theo Khng nh 2, f(x)khng c nhn t bc nht. V th q(x) khng c nhn t bc nht. Suy ra

    q(x) l bt kh quy trn Zp. Ly K l mt nghim ca q(x). Tngt nh chng minh Mnh 3.2.4, ta suy ra tp T = {a+ b | a, b Zp}l mt trng con ca K, trng ny c p2 phn t. V 6= 0 nn T .Theo Khng nh 1, ta c n 6= 1 vi mi n = 1, 2, 3, 4, 5, 6 v 7 = 1.V th cp ca trong nhm nhn T l 7. Theo nh l Lagrange, 7 l

    c ca cp ca nhm nhn T . Ch rng T c cp p2 1. Tuy nhinp2 1 khng chia ht cho 7 v n ng d vi 1 hoc 3 theo mun 7.iu ny l v l.

    Khng nh 4: f(x) khng c nhn t bc ba trong Zp[x]. Tht vy,gi s f(x) c nhn t bc ba q(x) Zp[x]. Theo cc Khng nh 2, 3,a thc q(x) bt kh quy trn Zp. Tng t nh chng minh Khng nh3, ta c th chng minh c tp

    T = {a+ b + c2 | a, b, c Zp}l mt trng con ca K, trng ny c p3 phn t. V 6= 0 nn T .Theo Khng nh 1, ta c n 6= 1 vi mi n = 1, 2, 3, 4, 5, 6 v 7 = 1.V th cp ca trong nhm nhn T l 7. Theo nh l Lagrange, 7 l

    c ca cp ca nhm nhn T . Nhm nhn T c cp p3 1. Ch rngp3 1 khng chia ht cho 7 v n ng d vi 5 theo mun 7, v l.Vy f(x) khng c nhn t bc mt, bc hai hay bc ba, do n bt

    kh quy trn Zp.

    3.2.6 Mnh . a thc f(x) = x10 + x9 + . . . + x + 1 l bt kh quy

    trn trng Zp vi mi s nguyn t p sao cho p 2, 6, 7, 8 (mod 11).Chng minh. Cho p l s nguyn t sao cho p 2, 6, 7, 8 (mod 11). Theonh l Kronecker, tn ti mt trng K cha Zp v cha cc nghim ca

    43S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 43

    f(x). Gi K l mt nghim ca f(x). Tng t nh chng minhMnh 3.2.5, ta c th ch ra rng n 6= 1 vi mi n = 1, 2, . . . , 10 v11 = 1. R rng 0 khng l nghim ca f(x), do 6= 0.Cho d {1, 2, 3, 4, 5}. Gi s f(x) c nhn t q(x) bt kh quy bc d.Gi K l mt nghim ca q(x). t

    T ={ d1

    i=0

    aii | ai Zp, i

    }.

    Do deg q(x) = q nn T l mt trng. Xt T nh mt Zpkhng gian vct. Do q(x) bt kh quy nn ta c th ch ra rng {1, , . . . , d1} l mtc s ca T . Do dimZp T = d v v th T c p

    dphn t. Do 6= 0 nn

    T . V n 6= 1 vi mi n = 1, 2, . . . , 10 v 11 = 1 nn c cp 11trong nhm nhn T . Theo nh l Lagrange, 11 l c ca pd 1. Theogi thit, ta c

    (i) p 1 ng d vi mt trong cc s 1, 5, 6, 7 theo mun 11.(ii) p2 1 ng d vi mt trong cc s 3, 2, 4, 8 theo mun 11.(ii) p3 1 ng d vi mt trong cc s 7, 6, 1, 5 theo mun 11.(iii) p4 1 ng d vi mt trong cc s 4, 8, 2, 3 theo mun 11.(iv) p5 1 ng d vi 9 theo mun 11.Nh vy, pd 1 khng l bi ca 11 vi mi d 6 5. Suy ra f(x) khngc nhn t bt kh quy bc d vi mi d 6 5. V th f(x) bt kh quy trnZp.

    44S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • 44

    Kt lun

    Trong lun vn ny, chng ti trnh by cc ni dung sau y v a

    thc bt kh quy trn mt trng:

    Trnh by mt s kin thc c s v a thc bt kh quy. S dng a thc bt kh quy chng minh nh l Kronecker vs tn ti trng phn r ca mt a thc (nh l 1.3.2) v chng minh

    nh l ca Galois v s tn ti mt trng hu hn (nh l 1.3.5).

    a ra mt s phng php xt tnh bt kh quy ca a thc trnQ nh phng php tm nghim hu t, phng php dng B Gauss(nh l 2.2.1), phng php dng tiu chun Eisenstein (nh l 2.3.1)

    v phng php rt gn theo mun mt s nguyn t (nh l 2.4.1).

    S dng nh l Kronecker v trng phn r (nh l 1.3.2) v nhl Lagrange v cp ca nhm hu hn (nh l 3.1.7) xt tnh bt kh

    quy ca mt vi a thc trn trng Zp vi p l s nguyn t.

    45S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn

  • Ti liu tham kho

    [Bo] N. C. Bonciocat, Upper bound for the number of factors for a class

    of polynomials with rational coefficients, Acta Arithmetica, (2) 113

    (2004), 175-187.

    [C] Nguyn T Cng, i s hin i, tp 1, NXB HQGHN, 2001.

    [DO] H. L. Dorwart and O. Ore, Criteria for the irreducibility of polyno-

    mials, Ann. Math, (2) 34 (1934), 81-94.

    [G] P. Garrett, Abstract Algebra, Chapman - Hall/CRC, 2007.

    [Rot] J. Rotman, Galois Theory, Springer (2001), Second Edition.

    [Sc] A. Schinzel, Polynomials with special regards to reducibility, Cam-

    bridge University Press, 2000.

    [S] I. Seres, Irreducibility of polynomials, Journal of Algebra, 2 (1965),

    283-286.

    45

    46S ha bi Trung tm Hc liu i hc Thi Nguyn http://www.lrc-tnu.edu.vn