82
ĐẠI HỌC ĐÀ NẴNG TRƯỜNG CĐ CÔNG NGHTHÔNG TIN BÁO CÁO TNG KT ĐỀ TÀI KHOA HC VÀ CÔNG NGHCẤP CƠ SỞ NGHIÊN CU KTHUT TIN MÃ HÓA TRONG HTHNG MIMO-OFDM Mã s: T2017-07-03 Chnhiệm đề tài: ThS. Phan ThQuỳnh Hương Đà Nng, Tháng 12 / 2017

NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

ĐẠI HỌC ĐÀ NẴNG

TRƯỜNG CĐ CÔNG NGHỆ THÔNG TIN

BÁO CÁO TỔNG KẾT

ĐỀ TÀI KHOA HỌC VÀ CÔNG NGHỆ

CẤP CƠ SỞ

NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG

HỆ THỐNG MIMO-OFDM

Mã số: T2017-07-03

Chủ nhiệm đề tài: ThS. Phan Thị Quỳnh Hương

Đà Nẵng, Tháng 12 / 2017

Page 2: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

ĐẠI HỌC ĐÀ NẴNG

TRƯỜNG CĐ CÔNG NGHỆ THÔNG TIN

BÁO CÁO TỔNG KẾT

ĐỀ TÀI KHOA HỌC VÀ CÔNG NGHỆ

CẤP CƠ SỞ

NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG

HỆ THỐNG MIMO-OFDM

Mã số: T2017-07-03

Xác nhận của cơ quan chủ trì đề tài Chủ nhiệm đề tài

Đà Nẵng, Tháng 12 / 2017

Page 3: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

i

MỤC LỤC

DANH MỤC HÌNH ............................................................................................... i

DANH MỤC CÁC TỪ VIẾT TẮT ..................................................................... ii

THÔNG TIN KẾT QUẢ NGHIÊN CỨU .......................................................... v

MỞ ĐẦU ............................................................................................................... 1

1. TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU THUỘC LĨNH VỰC

CỦA ĐỀ TÀI Ở TRONG VÀ NGOÀI NƯỚC ........................................ 1

2. TÍNH CẤP THIẾT CỦA ĐỀ TÀI ..................................................... 1

3. MỤC TIÊU ĐỀ TÀI .......................................................................... 1

4. ĐỐI TƯỢNG, PHẠM VI NGHIÊN CỨU ........................................ 2

5. CÁCH TIẾP CẬN, PHƯƠNG PHÁP NGHIÊN CỨU ..................... 2

6. NỘI DUNG NGHIÊN CỨU ............................................................. 2

CHƯƠNG 1. TỔNG QUAN HỆ THỐNG THÔNG TIN DI ĐỘNG .............. 3

1.1. GIỚI THIỆU CHƯƠNG ............................................................................ 3

1.2. TÌNH HÌNH PHÁT TRIỂN CỦA HỆ THỐNG THÔNG TIN DI ĐỘNG

[5], [10] .............................................................................................................. 3

1.2.1. Công nghệ di động thế hệ thứ 1 (1G) ............................................. 3

1.2.2. Công nghệ di động thế hệ thứ 2 (2G) ............................................. 4

1.2.3. Công nghệ di động thế hệ thứ 3 (3G) ............................................. 5

1.2.4. Công nghệ di động thế hệ thứ 4 (4G) ............................................. 6

1.3. KÊNH TRUYỀN VÔ TUYẾN [1], [10] .................................................... 7

1.3.1. Giới thiệu về truyền sóng vô tuyến ................................................. 7

1.3.2. Mô hình truyền dẫn quy mô lớn ...................................................... 8

1.3.3. Mô hình truyền dẫn quy mô nhỏ ................................................... 10

1.3.4. Một số loại nhiễu ........................................................................... 21

1.4. KẾT LUẬN CHƯƠNG ............................................................................ 22

CHƯƠNG 2. HỆ THỐNG MIMO- OFDM ..................................................... 23

2.1. GIỚI THIỆU CHƯƠNG .......................................................................... 23

Page 4: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

ii

2.2. DUNG LƯỢNG KÊNH TRUYÊN VÔ TUYẾN [2], [4], [7], [8], [11],

[12] .................................................................................................................. 23

2.2.1. Hệ thống SISO .............................................................................. 23

2.2.2. Hệ thống SIMO ............................................................................. 24

2.2.3. Hệ thống MISO ............................................................................. 24

2.2.4. Hệ thống MIMO ............................................................................ 25

2.2.5. Hệ thống đa người dùng ................................................................ 26

2.3. MÔ HÌNH MIMO TỔNG QUÁT [3], [9], [10] ....................................... 28

2.4. Hệ thống OFDM-MIMO .......................................................................... 29

2.4.1. Truyền dữ liệu sử dụng đa sóng mang .......................................... 29

2.4.2. Thực hiện rời rạc đa sóng mang .................................................... 32

2.4.3. Ghép kênh phân chia theo tần số trực giao (OFDM) .................... 37

2.5. KẾT LUẬN CHƯƠNG ............................................................................ 39

CHƯƠNG 3. CÁC KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐNG

MIMO-OFDM .................................................................................................... 40

3.1. GIỚI THIỆU CHƯƠNG........................................................................ 40

3.2. TỔNG QUAN KỸ THUẬT SDMA ...................................................... 40

3.3. TỔNG QUAN KỸ THUẬT TIỀN MÃ HÓA ....................................... 41

3.3.1 Giới thiệu chung ............................................................................. 41

3.3.2 Phân loại các kỹ thuật tiền mã hóa ................................................. 43

3.3.3 Kỹ thuật tiền mã hóa cho hệ thống MIMO-OFDM ....................... 44

3.4. KỸ THUẬT TIỀN MÃ HÓA ZERO FORCING.................................. 45

3.5. KỸ THUẬT TIỀN MÃ HÓA BLOCK DIAGONALIZATION .......... 47

3.6. KỸ THUẬT TIỀN MÃ HÓA DIRTY PAPER CODING .................... 50

3.7. KỸ THUẬT TIỀN MÃ HÓA TOMLINSON-HARASHIMA ............. 53

3.8. LỰA CHỌN THUÊ BAO ..................................................................... 56

3.9. KẾT LUẬN CHƯƠNG ......................................................................... 57

CHƯƠNG 4. CHƯƠNG TRÌNH MÔ PHỎNG VÀ KẾT QUẢ .................... 58

4.1. GIỚI THIỆU CHƯƠNG .......................................................................... 58

Page 5: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

iii

4.2. LƯU ĐỒ THUẬT TOÁN ........................................................................ 59

4.3. KẾT QUẢ VÀ NHẬN XÉT .................................................................... 60

4.3.1. Khảo sát BER của các kỹ thuật tiền má hóa tuyến tính ................ 60

4.3.2. Khảo sát BER của các kỹ thuật tiền mã hóa ................................. 61

4.3.3. Khảo sát BER của các kỹ thuật tiền mã hóa phi tuyến ................. 62

4.3.4. Khảo sát BER của các kỹ thuật khi thay đổi số thuê bao ............. 63

4.4. KẾT LUẬN CHƯƠNG ............................................................................ 65

KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN ĐỀ TÀI ......................................... 66

DANH MỤC TÀI LIỆU THAM KHẢO .......................................................... 67

Page 6: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

i

DANH MỤC HÌNH

Hình 1.1: FDMA ............................................................................................... 4

Hình 1.2:TDMA ................................................................................................ 5

Hình 1.3: CDMA ............................................................................................... 6

Hình 1.4: SDMA ............................................................................................... 6

Hình 1.5: Ba cơ chế truyền sóng cơ bản: Phản xạ, nhiễu xạ, tán xạ. ................ 9

Hình 1.6: Mô tả hiệu ứng Doppler .................................................................. 12

Hình 1.7: Phân loại pha đinh quy mô nhỏ....................................................... 17

Hình 1.8: Đặc tính kênh truyền pha đinh phẳng ............................................. 18

Hình 1.9: Đặc tính kênh truyền chọn tần ........................................................ 19

Hình 2.1: Hệ thống SISO ................................................................................ 23

Hình 2.2: Hệ thống SIMO ............................................................................... 24

Hình 2.3: Hệ thống MIMO nxm ..................................................................... 25

Hình 2.4: Máy phát đa sóng mang. ................................................................. 31

Hình 2.5: Máy thu đa sóng mang. ................................................................... 32

Hình 2.6: Tiền tố lặp có độ dài .................................................................... 35

Hình 2.7: ISI giữa các khối dữ liệu trong tín hiệu ngõ ra. .............................. 36

Hình 2.8: Hệ thống phát – thu OFDM ............................................................ 39

Hình 3.1: Trạm gốc với anten định hướng ...................................................... 41

Hình 3.2: Anten thu phát theo kỹ thuật SDMA .............................................. 41

Hình 3.3: Mô hình hệ thống sử dụng SDMA đơn giản ................................... 42

Hình 3.4: Mô hình hệ thống SDMA-OFDM .................................................. 44

Hình 3.5: Sơ đồ hệ thống ZF ........................................................................... 46

Hình 4.1: Lưu đồ thuật toán chương trình chính ............................................ 59

Hình 4.2: Lưu đồ thuật toán tính BER của hệ thống ...................................... 60

Hình 4.3: BER của các kỹ thuật tiền mã hóa tuyến tính ................................. 61

Hình 4.4: BER của các kỹ thuật tuyến tính và phi tuyến ................................ 62

Hình 4.5: BER của kỹ thuật tiền mã hóa phi tuyến. ....................................... 63

Hình 4.6: BER của kỹ thuật ZF khi thuê bao thay đổi. ................................... 64

Hình 4.7: BER của kỹ thuật DPC khi thuê bao thay đổi................................. 65

Page 7: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

ii

DANH MỤC CÁC TỪ VIẾT TẮT

AMPS Advanced Mobile Phone System Hệ thống điện thoại di động cải

tiến

AWGN Additive White Gaussian Noise Nhiễu Gauss trắng cộng

BEM Basis Expansion Model Mô hình cơ sở mở rộng

BER Bit Error Rate Tỉ lệ lỗi bit

CDMA Code Division Multiplexing

Access Đa truy cập phân chia theo mã

CP Cyclic Prefix Tiền tố lặp

CSI Channel State Information Thông tin trạng thái kênh

truyền

CSIT Channel State Information at

Transmitter

Thông tin trạng thái kênh

truyền tại máy phát

DFT Discrete Fourier Transform Biến đổi Fourier rời rạc

DoF Degress of free Bậc tự do

EGC Equal gain combining Kết hợp độ lợi bằng nhau

ETSI European Telecommunications

Standards Institude

Viện tiêu chuẩn viễn thông

Châu Âu

FDM Frequency Division Multiplexing Ghép kênh phân chia theo tần

số

FDMA Frequency Division Multiple

Access

Đa truy cập phân chia theo tần

số

FFT Fast Fourier Transform Phép biến đổi Fourier nhanh

GI Guard Interval Khoảng bảo vệ

GSM Global System for Mobile

Communication

Hệ thống thông tin di động toàn

cầu

Page 8: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

iii

ICI Inter Channel Interference Nhiễu liên kênh

IDFT Inverse Discrete Fourier

Transform Biến đổi Fourier rời rạc ngược

IFFT Inverse Fast Fourier Transform Biến đổi Fourier nhanh ngược

IMTS Improved Mobile Telephone

Service

Dịch vụ điện thoại di động cải

tiến

ISI Inter Symbol Interference Nhiễu liên ký tự

ITU International Telecommunication

Union Hiệp hội viễn thông quốc tế

LOS Light of Sight Đường truyền thẳng

LTE Long Term Evolution Phát triển dài hạn

MAP Maximum-A-Posteriori

MGC Maximum gain combining Kết hợp độ lợi lớn nhất

MIMO Multiple Input Multiple Output Đa ngõ vào đa ngõ ra

MISO Multiple input Single Output Đa ngõ vào một ngõ ra

ML Maximum Likelihood Khả giống cực đại

MS Mobile Station Trạm thuê bao

MSE Mean Square Error Lỗi bình phương trung bình

OFDM Orthogonal Frequency Division

Multiplexing

Ghép kênh phân chia theo tần

số trực giao

OFDMA Orthogonal Frequency Division

Multiplexing Access

Đa truy cập phân chia theo tần

số trực giao

PSD Power Spectral Density Mật độ phổ công suất

QAM Quadrature Amplitude

Modulation Điều chế biên độ vuông góc

SC Selection Diversity Phân tập chọn lựa

Page 9: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

iv

SDMA Space Division Multiple Access Đa truy cập phân chia theo

không gian

SIMO Single Input Multiple Output Một ngõ vào đa ngõ ra

SISO Single Input Single Output Một ngõ vào một ngõ ra

SNR Signal to Noise Rate Tỷ số tín hiệu trên nhiễu

TDM Time Division Multiplexing Ghép kênh phân chia theo thời

gian

TDMA Time Division Multiple Access Đa truy cập phân chia theo thời

gian

TIA Telecomunication Industry

Association

Hiệp hội Công nghiệp Viễn

thống

UMTS Universal Mobile

Telecommunnication System

Hệ thống thông tin di động đa

năng.

W-CDMA Wideband CDMA Đa truy cập phân chia theo mã

băng rộng

Page 10: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

v

ĐẠI HỌC ĐÀ NẴNG CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM

TRƯỜNG CĐ CÔNG NGHỆ THÔNG TIN Độc lập – Tự do – Hạnh phúc

THÔNG TIN KẾT QUẢ NGHIÊN CỨU

1. Thông tin chung:

- Tên đề tài: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ

THỐNG MIMO-OFDM

- Mã số: T2017-07-03

- Chủ nhiệm: ThS. Phan Thị Quỳnh Hương

- Thành viên tham gia:

- Cơ quan chủ trì: Trường Cao đẳng Công nghệ thông tin

- Thời gian thực hiện: Từ tháng 04/2017 đến thàng 12/2017

2. Mục tiêu: Nghiên cứu lý thuyết và áp dụng xây dựng chương trình mô phỏng

các kỹ thuật tiền mã hóa trong mô hình truyền dẫn MIMO đa người dùng, đưa ra

nhận xét và đánh giá.

3. Tính mới và sáng tạo: So sánh và đánh giá ưu nhược điểm của các kỹ thuật tiền

mã hóa trong hệ thống MU-MIMO.

4. Tóm tắt kết quả nghiên cứu: Kỹ thuật tiền mã hóa với ưu điểm vượt trội là loại

bỏ nhiễu giao thoa các tín hiệu nhận giữa các thuê bao khác nhau, giữa các anten

thu trong cùng một thuê bao đã góp phần đáng kể vào việc cải thiện chất lượng của

hệ thống MIMO-OFDM đang được ứng dụng rất nhiều trong các hệ thống viễn

thông tốc độ cao.

Trong quá trình nghiên cứu kỹ thuật tiền mã hóa trong hệ thống MIMO-OFDM, báo

cáo đã tập trung vào các phương pháp phổ biến như ZF, BD, DPC, TH. Bên cạnh

đó, báo cáo cũng trình bày về kỹ thuật OFDM, hệ thống MIMO, kênh truyền vô

tuyến nhằm có cái nhìn toàn diện hơn về hệ thống MIMO-OFDM. Ngoài ra báo cáo

cũng đề cập đến kỹ thuật SDMA, một kỹ thuật đa truy cập phân chia theo không

Page 11: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

vi

gian, góp phần giảm được hiện tượng giao thoa tần số, nhiễu đồng kênh, nhiễu đa

đường, tăng dung lượng hệ thống. Hiện nay SDMA được sử dụng rộng rãi và mang

lại lợi ích to lớn.

5. Tên sản phẩm: Chương trình mô phỏng các kỹ thuật tiền mã hóa trong hệ thống

MU-MIMO.

6. Hiệu quả, phương thức chuyển giao kết quả nghiên cứu và khả năng áp

dụng: Đề tài này có thể được dùng làm cơ sở nghiên cứu khoa học, giảng dạy,

hướng dẫn sinh viên.

7. Hình ảnh, sơ đồ minh họa chính

Hình 4.4: BER của các kỹ thuật tuyến tính và phi tuyến

Page 12: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

vii

Hình 0.1: BER của kỹ thuật tiền mã hóa phi tuyến.

Page 13: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

viii

Hình 4.6: BER của kỹ thuật ZF khi thuê bao thay đổi.

Hình 4.7: BER của kỹ thuật DPC khi thuê bao thay đổi

Page 14: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

ix

Đà Nẵng, ngày tháng năm

Cơ quan chủ trì Chủ nhiệm đề tài

Page 15: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

1

MỞ ĐẦU

1. TỔNG QUAN TÌNH HÌNH NGHIÊN CỨU THUỘC LĨNH VỰC CỦA

ĐỀ TÀI Ở TRONG VÀ NGOÀI NƯỚC

Trong thời đại công nghiệp hóa, hiện đại hóa nước nhà như hiện nay, ngành

thông tin di động đóng một vai trò hết sức quan trọng. Sự phát triển với tốc độ

chóng mặt về cả số lượng thuê bao lẫn chất lượng dịch vụ đã đóng góp đảng kể

vào việc liên lạc thông tin kinh tế - chính trị - xã hội của nước nhà. Và việc áp

dụng các kĩ thuật truyền thông không dây tiên tiến là một nguyên nhân mấu chốt

cho sự thành công.

Một loại hệ thống kênh truyền được sử dụng khá phổ biến trong thời gian

những năm gần đây, bởi sự hiệu quả và thiết thực, đó là hệ thống MIMO, hệ

thống cho thấy tính thực tế bởi việc thiết lập và xây dựng trên mô hình đa người

dùng, và đa anten phát ở trạm phát. Điều này làm cho hiệu quả kênh truyền tăng

lên đáng kể. Trong đó kĩ thuật tiền mã hóa đóng một vai trò cơ bản để tăng chất

lượng tín hiệu kênh MIMO.

2. TÍNH CẤP THIẾT CỦA ĐỀ TÀI

Một loại hệ thống kênh truyền được sử dụng khá phổ biến trong thời gian

những năm gần đây, bởi sự hiệu quả và thiết thực, đó là hệ thống MIMO, hệ

thống cho thấy tính thực tế bởi việc thiết lập và xây dựng trên mô hình đa người

dùng, và đa anten phát ở trạm phát. Điều này làm cho hiệu quả kênh truyền tăng

lên đáng kể. Trong đó, kĩ thuật tiền mã hóa đóng một vai trò cơ bản để cải thiện

khả năng nhận tín hiệu của máy thu, cải thiện hiệu suất sử dụng tín hiệu kênh

MIMO. Vì vậy, đề tài này se tìm hiểu, nghiên cứu các kỹ thuật tiền mã hóa trong

hệ thống MIMO-OFDM.

3. MỤC TIÊU ĐỀ TÀI

Nghiên cứu ly thuyết các kỹ thuật tiền mã hóa.

Page 16: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

2

Ap dụng mô phỏng ly thuyết trong mô hình truyền dẫn MIMO, đưa

ra nhận xét, đánh giá.Nghiên cứu và áp dụng lý thuyết sử dụng thông tin kênh

truyền trễ vào mô hình truyền dẫn MIMO đa người dùng.

4. ĐỐI TƯỢNG, PHẠM VI NGHIÊN CỨU

Đối tượng nghiên cứu:

o Hệ thống MIMO-OFDM

o Các kỹ thuật tiền mã hóa

Phạm vi nghiên cứu:

Kênh truyền MIMO, đồng thời giả sử các kênh truyền fading phẳng độc lập

và phân bố đều.

5. CÁCH TIẾP CẬN, PHƯƠNG PHÁP NGHIÊN CỨU

Phương pháp luận xuyên suốt của đề tài là kết hợp nghiên cứu lý thuyết và

mô phỏng để làm rõ nội dung đề tài. Cụ thể như sau:

- Dẫn dắt vấn đề từ các khái niệm cơ bản trong kênh truyền SISO, MIMO,

OFDM.

- Nguyên cứu các kỹ thuật tiền mã hóa ZF, BD, DPC, THC.

- Ứng dụng các kỹ thuật trên trong hệ thống MIMO.

Sử dụng phần mềm chuyên dụng (Matlab) để mô phỏng mô hình.

6. NỘI DUNG NGHIÊN CỨU

- Các khái niệm cơ bản trong kênh truyền SISO, MIMO, OFDM.

- Các kỹ thuật tiền mã hóa.

- Thực hiện mô phỏng các mô hình trên, phân tích so sánh.

- Viết báo cáo tổng kết đề tài.

Page 17: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

3

CHƯƠNG 1. TỔNG QUAN HỆ THỐNG THÔNG TIN DI ĐỘNG

1.1. GIỚI THIỆU CHƯƠNG

Trong chương này, ta se nghiên cứu về sự phát hiện của mạng thông tin di

động và tình hình chung của mạng di động hiên nay. Trong phần này còn trình bày

những khái niệm và một số vấn đề gây ảnh hưởng đến tín hiệu trong kênh truyền vô

tuyến.

1.2. TÌNH HÌNH PHÁT TRIỂN CỦA HỆ THỐNG THÔNG TIN DI ĐỘNG

[5], [10]

Vào cuối những năm 1940, dịch vụ điện thoại vô tuyến đầu tiên đã ra đời và

đây là dịch vụ thiết kế cho người sử dụng trên xe hơi. Sau đó, hệ thống điện thoại di

động cải tiến (IMTS) ra đời vào những năm 1960 bởi Bell Systems đã mang lại một

số cải tiến như gọi trực tiếp và có băng thông lớn hơn. Nhiều hệ thống tương tự đầu

tiên dựa trên IMTS ra đời vào cuối những năm 1960, đầu 1970. Các hệ thống này

được gọi là ‘tế bào’ vì một vùng phủ sóng lớn được chia thành các khu vực nhỏ

hơn, gọi là ‘tế bào’. Mỗi tế bào được cung cấp bởi một máy phát, máy thu có công

suất thấp.

1.2.1. Công nghệ di động thế hệ thứ 1 (1G)

Hệ thống di động thế hệ thứ nhất là một hệ thống tương tự, được phát triển

vào những năm 1970. Thế hệ đi động đầu tiên này có hai cải tiến lớn, đó là sự ra

đời của bộ vi xử lý và bộ chuyển đổi số của đường liên kết điều khiển giữa điện

thoại và trạm tế bào. Hệ thống điện thoại di động cải tiến (AMPS) đầu tiên được

đưa vào sử dụng tại Hoa Kỳ cũng là một hệ thống di động 1G. Công nghệ chính

được sử dụng trong 1G là đa truy cập phân chia theo tần số (FDMA), công nghệ

này cho phép thực hiện cuộc gọi thoại trong một quốc gia.

FDMA, đa truy cập phân chia theo tần số, là hệ thống tương tự phổ biến

nhất. Đối với kỹ thuật này, phổ tín hiệu se được chia thành nhiều dải tần con, và

mỗi dải tần gán cho một người sử dụng. Tại một thời điểm, chỉ có một người sử

Page 18: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

4

dụng gán cho một tần số. Vì thế khi đó, tần số đó se bận cho đến khi cuộc gọi kết

thúc, hoặc nếu có cuộc gọi khác thì se sử dụng tần số khác. Đối với cuộc gọi thông

thường, se cần hai tần số, một tần số để gửi, và một tần số để nhận. FDMA chỉ được

sử dụng trọng hệ thống tương tự thế thế đầu tiên, bởi vì sự lãng phí băng thông như

đã nói ở trên.

Hình 1.1: FDMA

1.2.2. Công nghệ di động thế hệ thứ 2 (2G)

Công nghệ di động thế hệ thứ hai xuất hiện vào cuối những năm 1980. Các

hệ thống 2G đã thực hiện số hóa tín hiệu thoại và đường liên kết điều khiển. Hệ

thống số mới này mang mang chất lượng tốt hơn và nhiều dung lượng kênh truyền

hơn (Ví dụ: Cho phép nhiều người hơn sử dụng điện thoại cùng lúc mà không bị rớt

cuộc gọi), chi phí thấp hơn tại các đầu cuối tiêu thụ. Công nghệ chính trong 2G là

đa truy cập phân chia theo thời gian (TDMA). Mạng thương mại đầu tiên ứng dụng

TDMA cho sử dụng công cộng là Truyền thông di động cho hệ thống toàn cầu

(GSM).

TDMA, đa truy cập phân chia theo thời gian se sử dụng toàn bộ phổ tần.

TDMA không chia thành các dải tần, mà chia theo thời gian, thành các khe thời

gian trên tất cả các tần số. Mỗi người dùng se được cấp một khe thời gian. Vì vậy,

nhiều người dùng có thể sử dụng chung một tần số, nhưng có khe thời gian khác

nhau. TDMA được sử dụng nhiều trong mạng 2G.

Page 19: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

5

Hình 1.2:TDMA

1.2.3. Công nghệ di động thế hệ thứ 3 (3G)

Hệ thống di động thế thế thứ ba hứa hẹn mạng lại các dịch vụ thông tin liên

lạc như thoại, fax, khả năng truyền dữ liệu qua Internet nhanh hơn. Mục tiêu chính

của 3G là cung cấp các dịch vụ mọi lúc, mọi nơi trên toàn thế giới, với hệ thống

chuyển vùng liền mạch giữa các tiêu chuẩn. IMT-2000 của ITU là một tiêu chuẩn

toàn cầu cho hệ thống 3G và cho phép các dịch vụ và ứng dụng sáng tạo, như giải

trí đa phương tiện, các dịch vụ dựa trên địa điểm,… Tại Nhật, Mạng 3G đầu tiên

được khải triển vào năm 2001. Công nghệ 3G có thể hỗ trợ 144 Kbps với tốc độ di

chuyển cao của phương tiên, 384 Kbps tại địa phương và 2Mbps cho các trạm cố

định.

3G đã khởi đầu như thế nào? Ý tường đầu tiên không phải đến từ các nhà

điều hành mạng, mà đến từ các nhà sản xuất thiết bị. Năm 1996, NTT (Nippon

Telephone & Telegraph) và Erission bắt đầu phát triển 3G, sau đó vào năm 1997 tại

Hoa Kỳ, Hiệp hội Công nghiệp Viễn thông (TIA - Telecomunication Industry

Association) đã chọn CDMA (đa truy cập phân chia theo mã) là kỹ thuật chính sử

dụng trong 3G. Vào năm 1998, Viện tiêu chuẩn viễn thông Châu Âu (ETSI -

European telecommunicaitons Standards Institude) cũng chọn CDMA làm công

nghệ phát triển. Cũng vào năm 1998, hệ thống viễn thông di động toàn cầu (UMTS)

đã phát triển kỹ thuật CDMA băng rộng (W-CDMA) và CDMA2000.

Hai tiêu chuẩn vô tuyến chính sử dụng trong 3G là W-CDMA và

CDMA2000. W-CDMA được sử dụng ở Châu Âu, còn CDMA2000 được sử dụng

tại USA. Đối với kỹ thuật CDMA, một tín hiệu mang dữ liệu, sau đó được nhân với

Page 20: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

6

tín hiệu có tốc độ cao hơn, băng thông lớn hơn, ở đây sử dụng ghép kênh phân chia

theo thời gian (TDM). CDMA2000 sử dụng ghép kênh phân chia theo mã (CDM).

CDMA, đa truy cập phân chia theo mã sử dụng phương pháp trải phổ. Khác

với FDMA, CDMA cho phép người dùng sử dụng tất cả các tần số có sẵn cùng lúc.

Mỗi cuộc gọi se được gán cho một mã riêng biệt, vì thế mới có tên là ‘phân chia

theo mã’. CDMA rất hiệu quả về băng thông. CDMA còn có thể trao đổi thông tin

với nhiều hơn một trạm cùng lúc. Vì thế nó được chọn để sử dụng trong hệ thống

3G.

Hình 1.3: CDMA

1.2.4. Công nghệ di động thế hệ thứ 4 (4G)

Thông tin di động thế hệ thứ tư se mang lại tốc độ truyền dữ liệu cao hơn so

với hệ thống 3G. Dự đoán, tốc độ dữ liệu của hệ thống 4G tăng lên đến 100 Mbps

đối với phương tiện di chuyển và 1Gbps đối với các trạm cố định.

Các kỹ thuật được sử dụng trong mạng 4G là OFDM, SDMA,…

Hình 1.4: SDMA

SDMA là kỹ thuật đa truy cập phân chia theo không gian. Kỹ thuật này sử

dụng các hướng (góc) khác nhau trong không gian tín hiệu, sau đó được phân kênh

Page 21: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

7

và gán cho người dùng khác nhau. Kỹ thuật này thường được thực hiện với các

anten định hướng (hình 1.4).

1.3. KÊNH TRUYỀN VÔ TUYẾN [1], [10]

Kênh truyền vô tuyến đưa ra những giới hạn về chất lượng của các hệ thống

thông tin không dây. Đường truyền giữa máy phát và máy thu có thể thay đổi từ

dạng đơn giản như đường truyền thẳng của ánh sáng, hoặc là các đường bị cản bởi

tòa nhà, núi và xe cộ,… Trong khi kênh truyền có dây có tính chất đứng yên và có

thể dự đoán được, còn kênh truyền không dây là các thông số ngẫu nhiên và biên độ

của tín hiệu có thể bị giảm bởi các vật thể di động trong không gian. Mô hình hóa

kênh truyền vô tuyến là một trong những khó khăn trong việc thiết kế hệ thống vô

tuyến di động, và thường được thực hiện với mô hình thống kế với các thông số đặc

trưng cho từng hệ thống.

1.3.1. Giới thiệu về truyền sóng vô tuyến

Các cơ chế truyền sóng điện từ rất đa dạng, nhưng thường là do phản xạ,

nhiễu xạ, tán xạ. Hầu hết các hệ thống vô tuyến tế bào hoạt động ở khu vực đô thị,

đây là khu vực đông đúc nên se không có các đường truyền thẳng của ánh sáng giữa

máy phát và máy thu. Sự hiện diện của các tòa nhà cao se gây là hao tổn nhiễu xạ.

Hoặc do sự phản xạ khi gặp các vật cản, làm cho các sóng điện từ se truyền trong

nhiều đường khác nhau đến đến máy thu. Sự tương tác giữa các sóng này gây nên

hiện tượng đa đường, và biên độ của sóng giảm khi khoảng cách giữa máy phát và

máy thu tăng lên.

Mô hình truyền dẫn thường tập trung vào việc dự đoán tín hiệu thu trung

bình tại một khoảng cách so với máy phát và sự thay đổi của cường độ tín hiệu ở

không gian gần khu vực đang xét. Mô hình truyền dẫn se dự đoán cường độ tín hiệu

với khoảng cách theo khoảng cách máy phát – máy thu để ước lượng khu vực hội tụ

vô tuyến của máy phát, gọi là mô hình truyền dẫn quy mô lớn, vì ta thực hiện đặc

trưng hóa cường độ tín hiệu theo khoảng cách máy phát – máy thu (khoảng hàng

trăm, hàng ngàn mét). Ngược lại, mô hình truyền dẫn đặc trung cho sự dao động

Page 22: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

8

nhanh của biên độ tín hiệu thu trên khoảng cách truyền ngắn (vài bước sóng) hoặc

trong thời gian truyền ngắn, được gọi là mô hình truyền dẫn quy mô nhỏ, hay mô

hình pha đinh. Khi người dùng di chuyển trên một khoảng cách nhỏ, tín hiệu thu tức

thời se dao động nhanh, gây ra pha đinh quy mô nhỏ.

1.3.2. Mô hình truyền dẫn quy mô lớn

Mô hình truyền dẫn trong không gian tự do

Mô hình truyền dẫn trong không gian tự do được sử dụng để dự đoán biên độ

tín hiệu thu khi không gian giữa máy phát và máy thu không có vật cản, tức là chỉ

có đường truyền thẳng giữa chúng. Hệ thống thông tin vệ tinh và các đường liên kết

vô tuyến LOS vi sóng điển hình cũng dựa trên mô hình truyền dẫn trong không gian

tự do này. Hầu hết mô hình truyền dẫn quy mô lớn đều dự đoán công suất thu là

hàm theo khoảng cách giữa máy phát – máy thu. Công suất không gian tự do nhận

được tại anten thu cách anten phát một khoảng d được biểu diễn theo phương trình

không gian tự do Friis như sau:

[1-1]

Trong đó, là công suất phát, là công suất thu theo hàm khoảng cách

máy thu – máy phát, là độ lợi anten phát, là độ lợi anten thu, là khoảng

cách giữa máy thu – máy phát theo đơn vị mét, là hệ số hao tổn hệ thống không

do truyền dẫn ( , là bước sóng theo đơn vị mét. Độ lợi của anten phụ thuộc

vào khẩu độ hiệu dụng như sau:

[1-2]

Khẩu độ hiệu dụng phụ thuộc vào kích thước vật ly của anten. phụ

thuộc vào tần số sóng mang:

Page 23: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

9

[1-3]

Trong đó là tần số sóng mang theo đơn vị Hz, là tần số sóng mang theo

đơn vị radian/giây, là vận tốc ánh sáng theo đơn vị mét/giây.

Theo phương trình 1-1 cho thấy công suất tín hiệu thu se giảm theo bình

phương khoảng cách máy phát – máy thu.

Suy hao đường truyền, biểu diễn cho sự suy hao tín hiệu. Đây là một đại

lượng dương tính theo đơn vị dB, là sự khác nhau (theo dB) giữa công suất truyền

và công suất thu hiệu dụng. Suy hao đường truyền đối với mô hình không gian tự

do như sau:

[1-4]

Ba cơ chế truyền sóng cơ bản

Ba cơ chế truyền sóng cơ bản ảnh hưởng đến truyền dẫn đối với hệ thống

truyền dẫn di động gồm phản xạ, nhiễu xạ, tán xạ. Công suất thu là thông số quan

trọng nhất được dự đoán thông qua mô hình truyền dẫn quy mô to dựa trên tính chất

vật lý của phản xạ, nhiễu xạ, tán xạ.

Hình 1.5: Ba cơ chế truyền sóng cơ bản: Phản xạ, nhiễu xạ, tán xạ.

Tín hiệu thu thực sự trong môi trường vô tuyến không dây thường mạnh hơn

so với tín hiệu được dự đoán, không chỉ là do hiện tượng phản xạ và nhiễu xạ. Khi

sóng vô tuyến truyền đến các bề mặt thô, năng lượng phản xạ se trải rộng theo tất cả

các hướng, dẫn đến sự tán xạ. Các vật thể như cột đèn, cây cối có xu hướng làm cho

Page 24: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

10

năng lượng tán xạ theo mọi hướng, tạo thêm năng lượng vô tuyến tại máy thu. Tóm

tại, tán xạ xảy ra khi sóng truyền qua môi trường gồm các vật cản có kích thước nhỏ

hơn so với bước sóng như bề mặt thô, và có số lượng lớn vật cản trên một đơn vị

thể tích.

1.3.3. Mô hình truyền dẫn quy mô nhỏ

Thuật ngữ ‘Pha đinh quy mô nhỏ’ được dùng để chỉ dao động nhanh của biên

độ của tín hiệu vô tuyến trong một khoảng thời gian ngắn, hoặc khoảng cách truyền

ngắn, vì vậy suy hao đường truyền quy mô lớn không đang kể trong trường hợp

này. Do cách tính chất của truyền dẫn sóng truyền trong không gian se tạo rất nhiều

phiên bản của tín hiệu truyền đến máy thu ở các thời điểm khác nhau, gây ra nhiễu

lẫn nhau, tạo ra pha đinh. Những sóng này, gọi là sóng đa đường, cùng kết hợp tại

anten thu, làm cho tín hiệu thu được có độ biến đổi biên độ và pha rộng.

Truyền đa đường quy mô nhỏ

Truyền đa đường trong kênh truyền vô tuyến se gây ra hiệu ứng pha định quy

mô nhỏ. Có ba loại hiệu ứng quan trọng nhất sau:

- Biên độ tín hiệu thay đổi nhanh trong khoảng cách truyền nhỏ, khoảng thời

gian nhỏ.

- Điều chế tần số ngẫu nhiên do dịch Doppler khác nhau ở các tín hiệu đa

đường khác nhau.

- Phân tán thời gian do trễ truyền đa đường.

Khi truyền trong khu đô thị cao ốc thường xảy ra pha đinh vì chiều cao của

các anten đi động thường thấp hơn chiều cao của các cấu trúc xung quanh, vì vậy se

không có đường truyền thẳng từ anten đến các trạm gốc. Thậm chí ngay cả khi

đường truyền thẳng tồn tại, hiện tượng đa đường vẫn xảy ra do phản xạ từ mặt đất

và các cấu trúc xung quanh. Sóng vô tuyến đến với nhiều hướng khác nhau se có

những độ trễ khác nhau. Sóng đến bao gồm các sóng phẳng có biên độ, pha, góc

đến phân bố ngẫu nhiên, Các thành phần đa đường này se kết hợp tại anten thu, và

có thể làm cho tín hiệu thu tại trạm di động bị sai lệch. Nếu trạm thu đứng yên, thì

Page 25: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

11

tín hiệu thu vẫn có thể chịu ảnh hường của pha đinh do sự di chuyển của các vật thể

trên kênh truyền.

Các yếu tố ảnh hưởng pha đinh quy mô nhỏ

Có nhiều yếu tố vật lý trên kênh truyền vô tuyến ảnh hưởng đến pha định

quy mô nhỏ, bao gồm:

- Truyền đa đường

- Tốc độ di chuyển

- Tốc độ của vật thể xung quanh

- Băng thông truyền của tín hiệu

Dịch Doppler

Giả sử thiết bị di động với vận tốc không đổi dọc theo đường có khoảng

cách d giữa điểm X và Y, trong khi nó se nhận tín hiệu từ trạm gốc S (hình 1.2). Độ

chênh lệch giữa các độ dài đường dẫn từ điểm S đến điểm X và Y là

, trong đó là thời gian cần thiết để thiết bị di chuyển

từ X đến Y, và được giả sử là giống nhau tại điểm X và Y vì ta giả định nguồn S

ở rất xa. Sự thay đổi pha của tín hiệu thu do độ dài đường truyền thay đổi là:

[1-5]

Và sự thay đổi về tần số, gọi là dịch Doppler, ky hiệu là , với:

[1-6]

Biểu thức 1.6 nêu lên mối liên hệ giữa dịch Doppler và vận tốc di chuyển và

góc giữa hướng di chuyển và hướng truyền đến của sóng. Ta có thể thấy rằng, nếu

thiết bị di chuyển về hướng truyền đến của sóng, dịch Doppler là một số dương, còn

nếu di chuyển ngược hướng truyền thì dịch Doppler se là một số âm.

Page 26: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

12

Hình 1.6: Mô tả hiệu ứng Doppler

Mô hình đáp ứng xung của kênh truyền đa đường

Tín hiệu phức truyền đi có thể được biểu diễn như sau:

[1-7]

Tín hiệu thu được khi truyền trên kênh truyền đa đường (L đường):

[1-8]

Trong đó là độ suy hao tại thời điểm từ máy phát đến máy thu trên đường

truyền , là độ trễ truyền tại thời điểm từ máy phát đến máy thu trên đường

truyền , là nhiễu nhiệt tại anten thu tại thời điểm .

Từ biểu thức 1-7 và 1-8 ta được:

Page 27: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

13

Với tín hiệu dải gốc thu được:

[1-9]

Bước tiếp theo là ta tạo mô hình kênh truyền để chuyển đổi từ mô hình theo

thời gian liên tục thành mô hình theo thời gian rời rạc, trong đó có sử dụng định lý

lấy mẫu. Giả sử dạng sóng vào x(t) có giới hạn băng là W. Phương trình dải gốc

được biểu diễn:

[1-10]

Với và .

Biểu diễn này tuân theo định lý lấy mẫu ở chỗ bất kỳ dạng sóng nào có băng

thông giới hạn ở W/2 thì có thể mở rộng thành hàm cơ sở trực giao

với hệ số tương ứng với các mẫu được lấy tại số nguyên lần của .

Từ phương trình 1-9, 1-10 tín hiệu thu trong dải gốc được biểu diễn:

Lẫy mẫu tín hiệu ngõ ra tại số nguyên lần với

Page 28: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

14

[1-11]

Đặt , biểu thức 1-11 có thể viết lại:

[1-12]

Vậy mô hình kênh truyền theo thời gian rời rạc được biểu diễn:

[1-13]

Với

Mô hình rời rạc theo theo thời gian đơn giản trên được sử dụng rộng rãi trong

các kỹ thuật truyền dẫn ở lớp vật ly như hệ thống OFDM (ví dụ WiFi, WiMax,

LTE).

Các thông số của kênh truyền đa đường di động

- Băng thông kết hợp

Nếu trải trễ là một hiện tượng tự nhiên gây ra bởi các đường truyền bị phản

xạ và tán xạ trên kênh truyền vô tuyến, thì băng thông kết hợp, ký hiệu là , được

định nghĩa theo mối liên hệ với trải trễ hiệu dụng. Băng thông kết hợp là thông số

thống kê của dải tần số mà kênh truyền được xem là “phẳng” (ví dụ kênh truyền mà

các thành phẩn phổ tần số đều cùng độ lợi và pha tuyến tính). Nói một cách khác,

độ rộng băng thông kết hợp là một dải tần số mà hai thành phần tần số có tương

quan biên độ lớn. Hai sóng sin với độ chênh lệch tần số lớn hơn chịu ảnh hưởng

khác nhau đối với kênh truyền. Nếu băng thông kết hợp được định nghĩa là băng

thông là hàm tương quan tần số lớn hơn 0.9, thì băng thông kết hợp xấp xỉ:

Page 29: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

15

[1-14]

Nếu hàm tương quan tần số lớn hơn 0.5, thì băng thông kết hợp xấp xỉ:

[1-15]

- Trải Doppler và thời gian kết hợp

Trải trễ và băng thông kết hợp là các thông số để biểu diễn sự phân tán về

mặt thời gian của kênh truyền trong tự nhiên. Tuy nhiên, chúng không cung cấp

thông tin về tính chất thay đổi theo thời gian của lênh truyền gây ra do có sự chuyển

động tương đối giữa trạm phát và trạm thu, hoặc do sự di chuyển của các vật cản

trong kênh truyền.

Trải Doppler là thông số trải rộng phổ do tốc độ thời gian của sự thay

đổi kênh truyền và được định nghĩa là dải tần số mà phổ Doppler thu là con số

khác không. Khi sóng sin ly tưởng có tần số được truyền đi, phổ tín hiệu thu,

được gọi là phổ Doppler, gồm các thành phần nằm trong dải từ đến

, với là dịch Doppler. Khoảng phổ mở rộng đó phụ thuộc vào , mà

lại là hàm theo vận tốc tương đối của thiết bị đi động và góc giữa hướng di

chuyển và hướng đến của sóng tán xạ. Nếu băng thông tín hiệu dải gốc lớn hơn

nhiều so với , thì ảnh hưởng của trải Doppler không đang kể tại máy thu. Khi

đó, kênh truyền gọi là kênh truyền pha đinh chậm.

Thời gian kết hợp là thông số trong miền thời gian của trải Doppler và

được dùng để đặc trung cho tính chất tự nhiên thay đổi theo thời gian của phân tán

tần số của kênh truyền trong miền thời gian. Trải Doppler và thời gian kết hợp

nghịch đảo nhau, vì vậy ta có:

Page 30: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

16

[1-16]

Thời gian kết hợp, thật ra, là thông số thống kê của khoảng thời gian mà đáp

ứng xung của kênh truyền không thay đổi. Về định lượng, có thể nói là đáp ứng

kênh truyền giống nhau trong khoảng thời gian đó. Nói một cách khác, thời gian kết

hợp là khoảng thời gian mà khi đó hai tín hiệu thu được se có sự tương quan biên độ

lớn nhất. Nếu băng thông nghịch đảo của tín hiệu dải gốc lớn hơn thời gian kết hợp

của kênh truyền, thì kênh truyền se thay đổi trong quá trình truyền bản tin dải gốc,

gây ra hiện tượng méo tại máy thu.

Phân loại pha đinh quy mô nhỏ

Dựa vào mối liên hệ giữa các thông số tín hiệu (băng thông, thời gian

truyền ký tự,…) và các thông số kênh truyền (trải trễ hiệu dụng, trải Doppler), mà

các tín hiệu truyền khác nhau se chịu ảnh hưởng của các loại pha đinh khác nhau.

Cơ chế phân tán thời gian và phân tán tần số trong kênh truyền vô tuyến di động

dẫn đến có 4 loại ảnh hưởng. Trong khi trễ đa đường liên quan đến phân tán thời

gian và pha đinh chọn tần, thì trải Doppler lại dẫn đến phân tán tần số và pha đinh

chọn thời. Hình 1.7 mô tả sự độc lập giữa chúng.

Pha đinh quy mô nhỏ (dựa trên trải trễ thời gian đa đường)

Pha đinh phẳng

1. BW tín hiệu < BW kênh truyền

2. Trải trễ < chu kỳ ký tự

Pha đinh chọn tần

1. BW tín hiệu > BW kênh truyền

2. Trải trễ > Chu kỳ ký tự

Page 31: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

17

Pha đinh quy mô nhỏ (dựa trên trải Doppler)

Pha đinh nhanh

1. Trải Doppler lớn

2. Thời gian kết hợp < chu kỳ ký tự

3. Kênh thay đổi nhanh hơn tín hiệu dải

gốc

Pha đinh chậm

1. Trải Doppler nhỏ

2. Thời gian kết hợp > chu kỳ ký tự

3. Kênh thay đổi chậm hơn tín hiệu dải

gốc

Hình 1.7: Phân loại pha đinh quy mô nhỏ

- Pha đinh phẳng

Khi kênh truyền vô tuyến di động có độ lợi hằng và đáp ứng pha tuyến tính

trên khoảng băng, trong đó băng thông này lớn hơn so với băng thông của tín hiệu

truyền, khi đó tín hiệu thu được gọi là chịu ảnh hưởng của pha đinh phẳng. Trong

pha đinh phẳng, cấu trúc đa đường của kênh truyền se đảm bảo cho các tính chất

phổ của tín hiệu truyền được nguyên vẹn tại máy thu. Tuy nhiên, do đa đường nên

độ lợi kênh truyền có sự dao động, làm cho độ lớn của tín hiệu thu se thay đổi theo

thời gian. Đặc tính của kênh truyền pha đinh phẳng được mô tả trong hình 1.4.

Page 32: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

18

Hình 1.8: Đặc tính kênh truyền pha đinh phẳng

Tóm lại, tín hiệu chịu ảnh hưởng pha đinh phẳng thì:

[1-17]

[1-18]

Với là băng thông nghịch đảo, chu kỳ ky tự; là băng thông tín hiệu;

và lần lượt là băng thông kết hợp và trải trễ của kênh truyền.

- Pha đinh chọn tần

Nếu kênh truyền có độ lợi hàng và đáp ứng pha tuyến tính trên khoảng băng

thông, trong đó băng thông này nhỏ hơn băng thông của tín hiệu truyền, thì kênh

truyền gọi là pha đinh chọn tần đối với tín hiệu thu. Khi đó, đáp ứng xung kênh

truyền se có trải trễ đa đường lớn hơn băng thông của tín hiệu. Và tín hiệu thu se

gồm nhiều phiên bản của tín hiệu đến, các phiên bản này suy hao và trễ, dẫn đến tín

hiệu thu se bị méo, gây ra nhiễu liên ký tự (ISI). Nếu quan sát trong miền tần số, các

thành phần tần số nhất định trong phổ tín hiệu thu se có độ lợi lớn hơn thành phần

khác.

Page 33: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

19

Hình 1.9: Đặc tính kênh truyền chọn tần

Đối với pha định chọn tần, phổ S(f) của tín hiệu phát lớn hơn băng thông kết

hợp của kênh truyền. Trong miền tần số, kênh truyền chọn tần khi độ lợi khác

nhau đối với các tần số khác nhau. Cũng do hiện tượng trễ đa đường nên kênh

truyền có hiện tượng chọn tần như vậy. Kênh truyền pha đinh chọn tần cũng được

gọi là kênh truyền băng rộng vì băng thông của tín hiệu s(t) lớn hơn băng thông của

đáp ứng xung của kênh truyền. Khi thời gian thay đổi, độ lợi và pha của kênh truyền

cũng thay đổi dọc theo phổ của s(t), làm cho tín hiệu thu r(t) bị méo thay đổi theo

thời gian. Tóm lại, tín hiệu chịu ảnh hưởng pha đinh chọn tần khi:

[1-19]

[1-20]

- Pha đinh nhanh

Phụ thuộc vào tín hiệu phát dải gốc thay đổi nhanh hay chậm so với tốc độ

thay đổi của kênh truyền, mà có thể phân loại được kênh truyền là pha đinh nhanh

hay pha đinh chậm. Đối với kênh truyền pha đinh nhanh, đáp ứng xung của kênh

truyền thay đổi nhanh so trong một chu kỳ ký tự. Khi đó thời gian kết hợp của kênh

truyền nhỏ hơn chu kỳ ký tự của tín hiệu phát. Tóm tại, tín hiệu chịu ảnh hưởng pha

đinh nhanh khi:

Page 34: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

20

[1-21]

[1-22]

Lưu y, khi kênh truyền được cho là pha đinh nhanh hay pha đinh chậm, thì

cũng không có nghĩa kênh truyền đó là pha đinh phẳng hay pha đinh chọn tần. Pha

đinh nhanh chỉ liên quan đến tốc độ thay đổi của kênh truyền do có sự di chuyển.

Trong trường hợp pha đinh phẳng, ta có xấp xỉ đáp ứng xung với hàm delta. Vì vậy,

kênh truyền pha đinh phẳng, nhanh là kênh truyền có biên độ của hàm delta thay đổi

nhanh hơn tốc độ thay đổi tín hiệu truyền ở dải gốc. Đối với trường hợp pha đinh

chọn tần, nhanh thì biên độ, pha, trễ của các thành phần đa đường se thay đổi nhanh

hơn tốc độ thay đổi của tín hiệu phát. Trên thực tế, pha đinh nhanh chỉ xuất hiện khi

tốc độ dữ liệu rất thấp.

- Pha đinh chậm

Đối với kênh truyền pha đinh chậm, đáp ứng xung của kênh truyền thay đổi

với tốc độ chậm hơn tín hiệu phát ở dải gốc s(t). Khi đó, kênh truyền được xem là

tĩnh trong một hoặc vài khoảng băng thông. Trong miền tần số, điều này có nghĩa là

trải Doppler của kênh truyền se nhỏ hơn nhiều so với băng thông của tín hiệu dải

gốc. Vì thế, tín hiệu chịu ảnh hưởng pha đinh chậm khi:

[1-23]

[1-24]

Rõ ràng ta thấy, tốc độ di chuyển của phương tiện (hoặc của các vật cản

trong kênh truyền) và tín hiệu dải gốc se quyết định tín hiệu chịu ảnh hưởng của pha

định nhanh hay chậm.

Page 35: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

21

1.3.4. Một số loại nhiễu

- Nhiễu AWGN

Nhiễu tồn tại trong tất cả các hệ thống truyền dẫn. Các nguồn nhiễu chủ yếu

là nhiễu nền nhiệt, nhiễu điện từ các bộ khuếch đại bên thu, và nhiễu liên ô (inter-

cellular interference). Các loại nhiễu này có thể gây ra nhiễu liên kí tự ISI, nhiễu

liên sóng mang ICI và nhiễu liên điều chế IMD. Nhiễu này làm giảm tỉ số tín hiệu

trên nhiễu SNR, giảm hiệu quả phổ của hệ thống. Và thực tế là tùy thuộc vào từng

loại ứng dụng, mức nhiễu và hiệu quả phổ của hệ thống phải được lựa chọn.

Hầu hết các loại nhiễu trong các hệ thống có thể được mô phỏng một cách

chính xác bằng nhiễu trắng cộng. Hay nói cách khác tạp âm trắng Gaussian là loại

nhiễu phổ biến nhất trong hệ thống truyền dẫn. Loại nhiễu này có mật độ phổ công

suất là đồng đều trong cả băng thông và biên độ tuân theo phân bố Gaussian. Vậy

dạng kênh truyền phổ biến là kênh truyền chịu tác động của nhiễu Gaussian trắng

cộng.

Nhiễu nhiệt là loại nhiễu tiêu biểu cho nhiễu Gaussian trắng cộng tác động

đến kênh truyền dẫn. Đặc biệt, trong hệ thống OFDM, khi số sóng mang phụ là rất

lớn thì hầu hết các thành phần nhiễu khác cũng có thể được coi là nhiễu Gaussian

trắng cộng tác động trên từng kênh con vì xét trên từng kênh con riêng lẻ thì đặc

điểm của các loại nhiễu này thỏa mãn các điều kiện của nhiễu Gaussian trắng cộng.

- Nhiễu ISI và ICI

Nhiễu ISI và ICI là hai loại nhiễu thường gặp nhất do ảnh hưởng của kênh

truyền ngoài nhiễu Gaussian trắng cộng. Như đã giới thiệu ở trên, ISI gây ra do trải

trễ đa đường. Để giảm ISI, cách tốt nhất là giảm tốc độ dữ liệu. Nhưng với nhu cầu

hiện nay là yêu cầu tốc độ truyền phải tăng nhanh. Do đó giải pháp này là không thể

thực hiện được.

Trong môi trường đa đường, ký tự phát đến đầu vào máy thu với các khoảng

thời gian khác nhau thông qua nhiều đường khác nhau. Sự mở rộng của chu kỳ ký

Page 36: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

22

tự gây ra sự chồng lấn giữa ký tự hiện thời với ký tự trước đó và kết quả là có nhiễu

liên ký tự ISI. Trong OFDM, ISI thường đề cập đến nhiễu của một ký tự OFDM với

ký tự trước đó.Trong hệ thống OFDM, để giảm được nhiễu ISI, phương pháp đơn

giản và thông dụng nhất là đưa vào tiền tố lặp CP. Ngoài nhiễu ISI, nhiễu ICI cũng

tác động không nhỏ đến chất lượng tín hiệu thu được.

ICI xảy ra khi kênh đa đường thay đổi trong thời gian ký tự OFDM. Dịch

Doppler trên mỗi thành phần đa đường gây ra dịch tần số trên mỗi sóng mang, kết

quả là mất tính trực giao giữa chúng. Sự lệch tần số sóng mang của máy phát và

máy thu cũng gây ra nhiễu ICI trong hệ thống OFDM. Nhiễu ICI được loại bỏ hoàn

toàn nhờ sử dụng tập sóng mang làm tập tần số của các kênh phụ.

1.4. KẾT LUẬN CHƯƠNG

Tóm lại, chương này đã cho ta biết thêm về mạng di động và quá trình phát

triển của hệ thống di động không dây, một số đặc điểm của kênh truyền di động và

một vài ảnh hưởng đến tín hiệu khi truyền trong không gian. Mặt khác, ta cũng có

thể hiểu cụ thể hơn các loại nhiễu thường gặp trong hệ thống kênh truyền không

dây, chính vì thế cần đưa ra những biện pháp để hạn chế nhiễu và ảnh hưởng của nó

đến chất lượng kênh truyền. Chính những ảnh hưởng đó đã làm tín hiệu khi phát

đến khi thu có thể bị lỗi, nên trong bất kỳ hệ thống nào cũng cần phải xử lý lỗi để

lấy lại tín hiệu giống như tín hiệu ban đầu. Và ở chương tiếp theo ta se tìm hiểu cụ

thể hơn về hệ thống MIMO-OFDM.

Page 37: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

23

CHƯƠNG 2. HỆ THỐNG MIMO- OFDM

2.1. GIỚI THIỆU CHƯƠNG

MIMO-OFDM là hệ thống kết hợp ưu điểm của hệ thống MIMO và kỹ thuật

OFDM để tăng tốc độ, dung lượng hệ thống cũng như giảm nhiễu, giảm kích thước

của máy phát và máy thu từ đó giúp tăng hiệu suất của hệ thống. Đây là một giải

pháp triển vọng cho hệ thống thông tin vô tuyến. Trong chương này chúng ta se đi

vào tìm hiểu về hệ thống MIMO, các dạng cấu hình, hệ thống MIMO-OFDM và mô

hình toán học của nó.

2.2. DUNG LƯỢNG KÊNH TRUYÊN VÔ TUYẾN [2], [4], [7], [8], [11], [12]

Hệ thống thông tin vô tuyến đã trải qua những thế hệ khác nhau từ hệ thống

SISO cho đến MIMO. Trong đó băng thông là một trong những thông số quan trọng

quyết định tốc độ truyền dữ liệu cho các ứng dụng dịch vụ. Nói một cách khác,

băng thông quyết định chất lượng của hệ thống. Phần này se trình bày lần lượt dung

lượng của các hệ thống SIMO, MISO, SIMO, MIMO.

2.2.1. Hệ thống SISO

Hệ thống SISO là hệ thống một ngõ vào và một ngõ ra. Đây là hệ thống

thông tin đơn giản nhất khi bên phát có 1 anten và bên thu có 1 anten. Mô hình

SISO thường được dùng trong nhiều hệ thống như Bluetooth, Wifi, TV,…

Hình 2.1: Hệ thống SISO

Dung lượng của hệ thống SISO theo lý thuyết Shannon như sau:

[2-1]

Page 38: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

24

Trong đó là dung lượng kênh truyền, là băng thông của hệ thống,

là tỷ số tín hiệu trên nhiễu.

SISO có một điểm thuận lợi, đó chính là sự đơn giản, không cần quá trình xử

ly phân tập. Thông lượng của hệ thống phụ thuộc vào băng thông kênh truyền và tỷ

số tín hiệu trên nhiễu. Trong một số điều kiện, hệ thống này chịu ảnh hưởng của

hiệu ứng đa đường gây ra hiện tượng pha đinh, suy hao dẫn đến giảm tốc độ dữ liệu,

mất gói, số bit lỗi tăng lên.

2.2.2. Hệ thống SIMO

SIMO là hệ thống một ngõ vào với một anten phát, và một ngõ ra với nhiều

anten thu. Để tối ưu hóa mô hình dữ liệu, nhiều mô hình phân tập thu khác nhau đã

được thực hiện tại máy thu như mô hình phân tập chọn lựa (SC), mô hình kết hợp

độ lợi lớn nhât (MGC) và mô hình kết hợp độ lợi bằng nhau (EGC). Hệ thống

SIMO được sử dụng cho các trạm thu sóng ngắn để đếm ảnh hưởng của pha đinh

tầng điện ly. Hệ thống SIMO thích hợp với nhiều ứng dụng nhưng khi máy thu đặt

tại các thiết bị đi động như điện thoại đi động, thì chất lượng se giới hạn bởi kích

thước, giá thành và lượng pin sử dụng.

Hình 2.2: Hệ thống SIMO

2.2.3. Hệ thống MISO

Hệ thonons MISO là hệ thống nhiều ngõ vào và một ngõ ra. Đây là một mô

hình trong hệ thống thông tin di động RF, trong đó nhiều anten đặt tại máy phát và

một anten thu đặt tại máy thu.

Dung lượng của hệ thống MISO và SIMO được biểu diễn như sau:

Page 39: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

25

Trong đó là số anten phát trong hệ thống MISO, và là số anten thu trong hệ

thống SIMO, là dung lượng kênh truyền, là băng thông của hệ thống, là

tỷ số tín hiệu trên nhiễu.

2.2.4. Hệ thống MIMO

Hệ thống MIMO là hệ thống nhiều anten phát đặt tại máy phát và nhiều

anten thu đặt tại máy thu. Giữa máy phát và máy thu, tín hiệu có thể đi nhiều đường

và nếu ta di chuyển anten với khoảng cách nhỏ thì đường truyền đó cũng se thay

đổi.

Hình 2.3: Hệ thống MIMO nxm

Khi sử dụng hệ thống MIMO, se có nhiều đường truyền tín hiệu. Có thể sử

dụng những tín hiệu này để cải thiện chất lượng tín hiệu thu. Dung lượng của hệ

thống MIMO được cho bởi:

Trong đó, là số anten phát, là số anten thu.

Nếu tín hiệu được mã hóa bằng kỹ thuật mã hóa thời gian – không gian, thì

dung lượng se là:

[2-2]

[2-3]

Page 40: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

26

Hệ thống MIMO thường được sử dụng để ghép kênh trong không gian để có

thể truyền tín hiệu đi theo những đường truyền khác nhau. Khi càng tăng số lượng

anten phát và thu, thì dung lượng kênh truyền càng được cải thiện.

2.2.5. Hệ thống đa người dùng

Kênh truyền đa người dùng là kênh truyền được chia sẻ giữa nhiều người

dùng khác nhau. Có hai loại kênh truyền đa người dùng: kênh lên và kênh xuống

(hình 2.4). Kênh xuống, hay được gọi là kênh phát sóng, có một máy phát đến nhiều

nhiều máy thu. Vì tín hiệu được truyền cho nhiều người dùng, nên tín hiệu truyền se

gồm , với công suất tổng là và băng thông , là tổng tín hiệu

truyền đến tất cả K người dùng. Vì thế tổng công suất của tín hiệu se được chia cho

nhiều người dùng khác nhau. Vấn đề đồng bộ giữa các máy thu khác nhau se dễ

dàng hơn, vì tất cả các tín hiệu truyền đi đều từ một máy phát. Một tính chất quan

trọng khác của đường xuống là cả tín hiệu và nhiễu đều bị méo bởi cùng một kênh.

Cụ thể là, tín hiệu của người dùng thứ là , và tất cả các tín hiệu

đi qua kênh truyền của người dùng thứ là đều đến người dùng thứ . Đây

là sự khác nhau cơ bản giữa đường lên và đường xuống, vì đường lên từ nhiều

người dùng khác nhau se bị nhiễu bởi kênh truyền khác nhau. Ví dụ kênh phát sóng

vô tuyến bao gồm phát sóng radio, phát sóng truyền hình, đường truyền từ vệ tính

đến các trạm mặt đất, đường truyền từ trạm gốc đến các đầu cuối di động trong hệ

thống tế bào.

Kênh lên, còn gọi là kênh đa truy cập, gồm nhiều máy phát gởi tín hiệu đến

một máy thu, trong đó, mỗi tín hiệu đều có băng thông tổng . Tuy nhiên, ngược

với đường xuống, mỗi người dùng ở đường lên đều có sự hạn chế công suất liên

quan với tín hiệu phát . Thêm vào đó, vì tín hiệu truyền từ nhiều máy phát

khác nhau, nên các máy phát này phải phối hợp với nhau để đồng bộ tín hiệu. Hình

[2-4]

Page 41: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

27

2.4 cũng mô tả tín hiệu từ các người dùng khác nhau ở đường lên thông qua nhiều

kênh khác nhau. Vì vậy, ngay cả khi các công suất giống nhau, thì công suất

nhận ở những người dùng khác nhau cũng se khác nhau (vì hệ số kênh truyền khác

nhau). Đường lên vô tuyến gồm đường từ card LAN của laptop đến các điểm truy

câp LAN, đường truyền từ trạm mặt đất lên vệ tinh, đường truyền từ thiết bị di động

đa người dùng đế trạm gốc trong hệ thống tế bào.

Hình 2.4: Kênh truyền đa người dùng

- Dung lượng kênh truyền xuống (kênh truyền phát sóng)

Khi nhiều người sử dụng cùng chia sẻ chung một kênh truyền, dung lượng

kênh truyền se không còn được đặc trưng bởi một thông số. Nếu chỉ một người sử

dụng chiếm tất cả các không gian tín hiệu trong kênh truyền, dung lượng kênh

truyền được mô tả như các phần trên. Nếu có nhiều người dùng thì kênh truyền đa

người dùng se được đặc trưng bằng vùng tỷ lệ, trong đó mỗi điểm là một vecto tốc

độ của các người dùng với xác suất lỗi nhỏ. Sự kết hợp của các vecto tốc độ trong

truyền đa người dùng thì được gọi là vùng dung lượng của hệ thống đa người dùng.

Dung lượng kênh truyền ở đường lên và đường xuống se khác nhau, là do sự khác

nhau cơ bản giữa các mô hình kênh truyền này. Tuy nhiên, có thể xem đường lên và

đường xuống giống như gương và ảnh của nhau, nên có thể có một mối quan hệ

Kênh lên Kênh xuống

Page 42: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

28

giữa các dung lượng này. Tiếp theo phần này se tập trung vào dung lượng kênh

truyền đường xuống.

Ta giả sử kênh truyền phát sóng (ký hiệu là BC) gồm một máy thu gửi nhiều

dòng dữ liệu khác nhau đến nhiều máy thu khác nhau. Ở đây tập trung chủ yếu vào

kênh truyền BC hai người dùng. Kênh truyền BC hai người dùng gồm một máy

phát và hai máy thu có tốc độ dữ liệu là . Độ lợi kênh truyền giữa máy

phát và máy thu thứ là , và mỗi máy thu có PSD nhiễu AWGN là

. Ta định nghĩa nhiễu tác động lên kênh thứ là , và

. Gọi P và B là công suất phát và băng thông của kênh truyền. Nếu máy

phát phân bổ tất cả các công suất và băng thông cho một trong những người dùng,

thì người dùng còn lại se không nhận đc gì. Vì vậy, tập hợp các tốc độ đồng thời

(R1, R2) bao gồm các cặp (C1,0) và (0,C2), trong đó:

Là dung lượng của một người dùng [bps]. Hai điểm này se giới hạn vùng

dung lượng BC.

2.3. MÔ HÌNH MIMO TỔNG QUÁT [3], [9], [10]

Ta giả sử có kênh truyền băng rộng dải gốc dạng phức với M anten phát và K

máy thu, mỗi máy thu được trang bị một anten thu. Trong môi trường pha đinh

phẳng, kênh truyền này se được mô hình hóa:

Trong đó + là toán tử chuyển vị liên hợp,

,

,

[2-5]

[2-6]

Page 43: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

29

là các biến iid và độc lập lẫn nhau.

.

Ta định nghĩa .

Ta giả sử ở máy phát và máy thu đều đã được có với độ trễ là 1 đơn vị

thời gian.

Ta định nghĩa với . Ta giả sử rằng với mỗi tập con của

các máy thu ( ), máy phát se gởi bản tin với tốc độ . Ví dụ,

bản tin là tin chung gởi cho máy thu thứ nhất và thứ hai. Tương tự, ,

viết đơn giản là , là tin dành cho máy thu thứ nhất. Ta định nghĩa như sau:

Nếu , ta có thể gọi là tin bậc thứ j. Ta định nghĩa bậc tự do j,

, như sau:

Với biểu diễn cho miền dung lượng của kênh truyền, và

biểu diễn cho vec-tơ tốc độ bản tin đối với mỗi tập con của máy thu. Và

là đại lượng đặc trưng cho bậc tự do của kênh truyền.

2.4. Hệ thống OFDM-MIMO

2.4.1. Truyền dữ liệu sử dụng đa sóng mang

Dạng đơn giản nhất của điều chế đa sóng mang là chia dòng dữ liệu thành

nhiều dòng dữ liệu con để truyền đi trên các kênh con trực giao nhau. Để tính số

[2-7]

[2-8]

Page 44: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

30

lượng các dòng dữ liệu con, ta phải dựa vào thời gian truyền một ký tự trong mỗi

chuỗi dữ liệu con sao cho thời gian này phải lớn hơn trải trễ của kênh truyền. Điều

này có nghĩa là băng thông của kênh con se nhỏ hơn băng thông kết hợp của kênh

truyền. Khi thực hiện được điều này, các kênh con se giảm được nhiễu ISI.

Ta xem xét một hệ thống tuyến tính có tốc độ dữ liệu và băng thông .

Khi băng thông kết hợp của kênh truyền < , tín hiệu se bị fading chọn tần.

Khái niệm đầu tiên của điều chế đa sóng mang là chia hệ thống băng tần rộng này

thành N hệ thống con tuyến tính song song, mỗi kênh con có băng thông là

và tốc độ dữ liệu . Với giá trị N đủ lớn, băng thông của

kênh con se là , điều này đảm bảo fadinh trên mỗi kênh con là

fadinh phẳng. Ta xét trong miền thời gian. Thời gian truyền một ký tự tỷ lệ

thuận với . Vì vậy, khi , ta có , với

là trải trể của kênh truyền. Tóm lại, khi giá trị N đủ lớn, thời gian truyền một ky

tự se lớn hơn trải trễ, từ đó các kênh con se giảm được nhiễu ISI.

Hình 3.1 mô tả máy phát đa sóng mang. Dòng bit se được chia thành N dòng

con thông qua bộ chuyển đổi nối tiếp – song song. Dòng con thứ sau khi được

điều chế se được tải lên sóng mang con , chiếm băng thông là . Ta giả sử đưa

vào xung cosine nâng cho g(t), ta se có thời gian truyền một ky tự là

đối với mỗi dòng dữ liệu con ( là hệ số rolloff cho dạng

xung). Tín hiệu phát đi bao gồm tất cả các kênh con có dạng như sau:

Trong đó: là ky tự phức trên sóng mang con thứ , và là pha của sóng mang

con thứ . Để không bị chồng lấn, ta cho . Các

dòng dữ liệu con se được tải trên các kênh con trực giao nhau với băng thông con là

[2-9]

Page 45: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

31

, với tổng các băng thông con và tốc độ dữ liệu . Như vậy,

dạng điều chế đa sóng mang không làm thay đổi tốc độ dữ liệu, băng thông tín hiệu

so với hệ thống ban đầu, nhưng hầu như loại bỏ được nhiễu ISI (vì ).

Máy thu đa sóng mạng được biểu diễn trong hình 3.1. Mỗi kênh con se qua

một bộ lọc băng hẹp để loại bỏ các kênh con khác, thực hiện giải điều chế và kết

hợp lại thông qua bộ chuyển đổi song song – nối tiếp để khôi phục lại chuỗi dữ liệu

ban đầu. Chú ý, kênh con thứ se chịu ảnh hưởng của pha đinh phẳng tương ứng

với độ lợi kênh truyền .

Hình 2.4: Máy phát đa sóng mang.

Mặc dù dạng điều chế đa sóng mang rất đơn giản và dễ hiểu, nhưng nó vẫn

có một vài nhược điểm. Đầu tiên, khi thực hiện trong thực tế, các kênh con se chiếm

dụng băng thông lớn hơn so với trường hợp xung cosine ly tưởng, nên dạng xung se

bị giới hạn về mặt thời gian. Giả sử biểu thị cho băng thông cần thiết bổ sung

Page 46: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

32

do thời gian hạn chế của dạng xung. Cho nên, các kênh con phải là

và nếu hệ thống đa sóng mang có N kênh con, băng thông hao hụt do hạn chế thời

gian là .

Băng thông tổng cộng cần thiết cho tất cả các kênh con là:

Như vậy, dạng điều chế đa sóng mang này không hiểu quả về mặt băng tần.

Thứ hai, các bộ lọc thông thấp gần ly tưởng (rất đắt) se phải duy trì sự trực giao của

các sóng mang con tại máy thu. Đồng thời, với mô hình này, ta se cần N bộ điều chế

và giải điều chế độc lập, từ đó se làm tăng chí phí, kích cỡ thiết bị lớn và tiêu thụ

nhiều điện năng. Phần tiếp theo se trình bày về phần thực hiện rời rạc của mô hình

điều chế đa sóng mang mà không cần sử dụng nhiều bộ điều chế và giải điều chế.

Hình 2.5: Máy thu đa sóng mang.

2.4.2. Thực hiện rời rạc đa sóng mang

Một cách đơn giản và giá thành rẻ để thực hiện điều chế đa sóng mang là sử

dụng biến đồi Fourier rời rạc thuận (DFT) và ngược (IDFT) cùng với các thuật toán

[2-10]

Page 47: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

33

đã mở rộng thị trường sử dụng của mô hình điều chế này. Trong phần này, trước

tiên se trình bày về những đặc tính cơ bản của DFT, minh họa bằng kỹ thuật OFDM

sử dụng DFT và IDFT.

a. DFT và các tính chất

Đặt biểu diễn cho chuỗi rời rạc theo thời gian. DFT N

điểm của được định nghĩa như sau:

Biến đổi DFT là biến đổi thời gian rời rạc, tương đương với biến đổi Fourier

thời gian liên tục. đặc trưng cho miền tần số của mẫu theo thời gian ,

trong khi đó, lại liên quan đến . Cả hai dạng biến đổi DFT và biến đổi

Fourier thời gian liên tục đều dựa trên cơ sở hàm mũ phức có tính chất

eigenfunctions đối với bất kỳ hệ thống tuyến tính nào. Chuỗi x[n] có thể được khôi

phục từ dạng DFT của nó thông qua bộ IDFT:

Thông thường, biến đổi DFT và IDFT được thực hiện phần cứng bằng biến

đổi Fourier nhanh (FFT) và dạng ngược của nó (IFFT).

Khi dòng dữ liệu vào x[n] được truyền đi qua kênh truyền rời rạc và không

thay đổi theo thời gian h[n], ngõ ra y[n] là phép chập thời gian rời rạc của tín hiệu

vào và đáp ứng xung của kênh truyền:

[2-11]

[2-12]

[2-13]

Page 48: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

34

Phép chập vòng N điểm của x[n] và h[n] định nghĩa như sau:

Trong đó: biểu thị cho modulo N. Nghĩa là là

dạng tuần hoàn của với chu kỳ . Do đó, y[n] trong các biểu thức trên

cũng tuần hoàn với chu kỳ N. Từ định nghĩa của DFT, phép chập vòng trong miền

thời gian se tương đương phép nhân trong miền tần số:

Trong biểu thức trên, khi thực hiện chập vòng kênh truyền và tín hiệu vào, và

nếu máy thu biết thông tin kênh truyền h[n], thì chuỗi dữ liệu ban đầu có thể được

khôi phục bằng cách lấy IDFT của . Nhưng ngõ ra của

kênh truyền không phải là chập vòng, mà la chập tuyến tính. Tuy nhiên, phép chập

tuyến tính giữa tín hiệu vào và đáp ứng xung có thể chuyển sang dạng chập vòng

bằng cách thêm chuỗi tiền tố lặp (CP) vào chuỗi dữ liệu.

b. Tiền tố lặp (CP)

Giả sử chuỗi tín hiệu vào là có chiều dài N và đáp

ứng xung hữu hạn (FIR) của kênh truyền thời gian rời rạc là

có chiều dài , với là trải trễ của kênh truyền và là thời gian

lấy mẫu tương ứng với khoảng thời gian rời rạc. Tiền tố lặp của được định

nghĩa là , nghĩa là tiền tố lặp se chứa giá trị cuối cùng

của chuỗi . Với mỗi chuỗi tín hiệu vào có chiều dài N, mẫu cuối se được sao

chép và đặt lên vị trí đầu của chuỗi tín hiệu vào. Sau khi thêm tiền tố lặp se tạo

thành chuỗi mới , có chiều dài . Trong đó

, như hình

[2-14]

[2-15]

Page 49: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

35

dưới đây. Chú y, có thể viết với , tức là

với .

Hình 2.6: Tiền tố lặp có độ dài

Giả sử là tín hiệu vào hệ thống có kênh truyền thời gian rời rạc có đáp

ứng xung . Tín hiệu ngõ ra , với là:

Trong đó, ở phương trình thứ ba, ta có ,

với . Vì thế khi ta thêm tiền tố lặp vào tín

hiệu, phép chập tuyến tính đố ivới đáp ứng xung của kênh truyền , với

se trở thành phép chập vòng. Tính DFT của tín hiệu ngõ ra trường

hợp ly tưởng, ta có:

[3-1]

[2-17]

[2-16]

Page 50: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

36

Và tín hiệu vào với , có thể khôi phục từ tín hiệu vào

với , và như sau:

Chú y rằng với có độ dài có mẫu đầu tiên là

không cần sử dụng để khôi phục với , do

các thành phần này liên quan đến tiền tố lặp. Nếu ta giả sử x[n] chia thành các khối

dữ liệu có kích thước N gồm tiền tố lặp để tạo thành . mẫu đầu tiên của

y[n]=h[n]* se bị tác động cũa nhiễu ISI do mẫu cuối của khối dữ liệu trước

(hình 3.4). Các tiền tố lặp này có tác dụng loại bỏ ISI giữa các khối dữ liệu, vì

mẫu đầu tiên của tín hiệu ra se bị ISI, mà thành phần này có thể được loại bỏ mà

không tổn thất đến thông tin ban đầu. Trong miền thời gian liên tục, cách này tương

tự khi ta sử dụng khoảng bảo vệ có thời gian sau mỗi khỗi N ky tự với thời gian

để loại bỏ ISI giữa các khối dữ liệu.

Hình 2.7: ISI giữa các khối dữ liệu trong tín hiệu ngõ ra.

Những phân tích trên thúc đẩy cho sự ra đợi của OFDM. Trong OFDM, tín

hiệu vào được chia thành các khối có kích thước N, mỗi khối gọi là một ký tự

OFDM. Tiền tố lặp se được thêm vào mỗi ký tự OFDM để có thể thực hiện phép

chập vòng giữa tín hiệu vào và đáp ứng xung của kênh truyền. Tại máy thu, các

mẫu tín hiệu bị ảnh hưởng bởi ISI giữa các ký tự OFDM se được loại bỏ. Thực hiện

[2-18]

Page 51: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

37

DFT với các mẫu còn lại có thể khôi phục được chuỗi tin ban đầu. Phần OFDM se

được trình bày kỹ hơn ở phần sau.

2.4.3. Ghép kênh phân chia theo tần số trực giao (OFDM)

Thực hiện OFDM theo kỹ thuật điều chế đa sóng mang như hình 3.5. Chuỗi

tín dữ liệu vào se được điều chế nhờ bộ điều chế QAM, ngõ ra là một chuỗi số phức

. Chuỗi ky tự này se đưa qua bộ chuyển đổi nối tiếp –

song song, ngõ ra là một tập hợp gồm N ky tự QAM song song

tương ứng mỗi ky tự được tải đi trên một sóng mang

con. Ngõ ra của bộ chuyển đổi nối tiếp – song song này còn gọi là thành phần tần số

rời rác của tín hiệu ngõ ra OFDM s(t). Để tạo ra s(t), các thành phần tần số này se

được chuyển đổi thành các mẫu thời gian bằng cách truyền quá bộ IDFT N điểm (để

đạt hiệu quả hơn khi sử dụng thuật toán IFFT). Ngõ ra của bộ IFFT là các ky tự

OFDM gồm x[n]=x[0],...,x[N-1] có chiều dài N, với mỗi giá trị là:

Chuỗi này tương ứng với các mẫu của tín hiệu đa sóng mang, và vế bên phải

tương ứng với tổng các ky tự QAM X[i], với mỗi ky tự QAM se được điều chế với

sóng mang , . Tiền tố lặp se được thêm vào ky tự OFDM, tạo

ra các mẫu

. Sau

đó chuối tín hiệu này se được qua bộ chuyển đổi song song – nối tiếp và bộ D/A,

tạo thành tín hiệu OFDM dải gốc . Tín hiệu , sau đó, se nâng lên tần số f0

phát đi.

Sau khi phát đi, tín hiệu se truyền qua kênh truyền có đáp ứng xung là h(t),

cộng với nhiễu, ta được tín hiệu thu là . Tín hiệu này se

[2-19]

Page 52: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

38

được hạ tần xuống dải gốc và qua bộ lọc để loại bỏ các thành phần tần số cao. Bộ

chuyển đổi A/D tạo thành chuỗi tín hiệu ,

. Tiền tố của tín hiệu y[n] gồm các mẫu đầu tiên sau đó se bị

loại bỏ, kết quả thu được là N mẫu trong miền thời gian, DFT của các mẫu này là

. Các mẫu trong miền thời gian này se được chuyển đổi nối tiếp –

song song và qua bộ FFT. Tín hiệu này là một dạng của tín hiệu ban đầu ],

với là hệ số kênh truyền fadinh phẳng tương ứng với kênh con thứ .

Ngõ ra của bộ FFT se được chuyển đổi song song – nối tiếp và qua bộ giải điều chế

QAM để khôi phục tín hiệu ban đầu.

Hệ thống OFDM hiệu quả ở chỗ là hệ thống này chia kênh truyền băng rộng

thành tập hợp các kênh con băng hẹp trực giao với nhau, trên mỗi băng con se tải đi

các ky hiệu QAM khác nhau. Phía máy phát không cần thông tin kênh truyền

để chia kênh. Nói một cách khác, kênh truyền thời gian liên

tục với đáp ứng tần số H(f) se được chia nhỏ thành các kênh con trực giao mà

không cần biết H(f) bằng cách tách tín hiệu ban đầu thành các dải con không chồng

lấn. Bộ giải điều chế có thể se sử dụng thông tin kênh truyền để khôi phục lại ky tự

QAM ban đầu bằng phép chia: .

Page 53: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

39

Hình 2.8: Hệ thống phát – thu OFDM

2.5. KẾT LUẬN CHƯƠNG

Việc ứng dụng kỹ thuật OFDM vào hệ thống MIMO là một giải pháp công

nghệ để nâng cao chất lượng cho hệ thống, tăng dung lượng kênh truyền, giảm

nhiễu cho hệ thống thông tin vô tuyến hiện nay. Tuy nhiên khi số thuê bao trong hệ

thống tăng lên se làm tăng nhiễu giao thoa xuyên kênh. Sử dụng kỹ thuật tiền mã

hóa là một trong những giải pháp để khắc phục vấn đề này. Trong chương tiếp theo

chúng ta se tìm hiểu về kỹ thuật tiền mã hóa trong hệ thống MIMO-OFDM.

Page 54: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

40

CHƯƠNG 3. CÁC KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ

THỐNG MIMO-OFDM

3.1. GIỚI THIỆU CHƯƠNG

Trong chương này se trình bày cụ thể về các kỹ thuật tiền mã hóa như Zero-

forcing, Block Diagonalization, Dirty Paper Coding, Tomlinson-Harashima áp dụng

trong hệ thống MIMO-OFDM. Trước khi đi vào cụ thể từng kỹ thuật tiền mã hóa,

chương này cũng trình bày tổng quan về kỹ thuật đa truy cập phân chia theo không

gian.

3.2. TỔNG QUAN KỸ THUẬT SDMA

Kỹ thuật đa truy cập phân chia theo không gian (SDMA) là một kỹ thuật sử

dụng hướng (góc) như một miền khác trong không gian, để phân kênh và gán cho

các thuê bao khác nhau. Kỹ thuật này được thực hiện dựa trên các anten định hướng

như hình 3.1. Các kênh trực giao này được gán cho thuê bao sao cho sự tách góc

giữa các thuê bao phải vượt qua độ phân giả góc của anten định hướng. Ưu điểm

của kỹ thuật này là giúp tăng đáng kể dung lượng và tốc độ của hệ thống. Trước

SDMA, có các kỹ thuật đa truy cập khác như FDMA, TDMA, CDMA… nhưng các

kỹ thuật này đều có khuyết điểm như cồng kềnh, phức tạp, chống nhiễu kém khi hệ

thống yêu cầu cung cấp các dịch vụ tốc độ cao với số người dùng lớn. Hiện tại

SDMA đang được nghiên cứu và ứng dụng để phục vụ nhu cầu ngày càng cao của

hệ thống thông tin di động.

Page 55: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

41

Hình 3.1: Trạm gốc với anten định hướng

SDMA phục vụ các thuê bao theo các anten định hướng búp sóng hẹp. Với

kỹ thuật này thì không gian phủ sóng được khu vực hóa, nghĩa là không gian phủ

sóng se được chia thành các miền hẹp hơn. Với kỹ thuật này thì hệ thống se tăng

được hiệu quả sử dụng lại tần số, giảm được hiện tượng giao thoa tần số, nhiễu đa

đường, nhiễu đồng kênh, góp phần tăng dung lượng hệ thống. Hiện nay kỹ thuật

này được triển khai ngay trên các hệ thống anten thông minh, hệ thống anten này có

thể xử lý tín hiệu và điều khiển búp sóng chính cho phù hợp với khoảng cách thuê

bao.

Hình 3.2: Anten thu phát theo kỹ thuật SDMA

3.3. TỔNG QUAN KỸ THUẬT TIỀN MÃ HÓA

3.3.1 Giới thiệu chung

Kỹ thuật tiền mã hóa thực chất là một sự tổng quát của quá trình kết hợp tín

hiệu và sau đó tập trung bức xạ theo một hướng đặc biệt để hỗ trợ lớp truyền dẫn

trong hệ thống thông tin di động đa anten. Các tín hiệu giống nhau được phát ra từ

Page 56: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

42

các anten với trọng số thích hợp để tối ưu hóa mức tín hiệu tại đầu thu trong lớp

truyền dẫn đơn beamforming. Khi có nhiều anten nhận thì phải dùng nhiều lớp kết

hợp.

Để hiểu rõ hơn mục đích của kỹ thuật tiền mã hóa, chúng ta xét hệ thống sử

dụng kỹ thuật SDMA đơn giản sau:

Hình 3.3: Mô hình hệ thống sử dụng SDMA đơn giản

Tín hiệu s1, s2 được trạm gốc phát đồng thời trên M anten. Tín hiệu mà User

1, User 2 mong muốn nhận được là s1, s2. Tuy nhiên tín hiệu thu được là:

[3-1]

[3-2]

Với tín hiệu thu y1 thì ngoài thành phần mong muốn là M

1 1,m

m=1

s h còn có các

thành phần không mong muốn là nhiễu giao thoa liên thuê bao M

2 1,m

m=2

S h và nhiễu

1 1 1, 2 1, 1

1 1

M M

m m

m m

y s h s h z

2 2 2, 1 2, 2

1 1

M M

m m

m m

y s h s h z

Page 57: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

43

nhiệt z1. Về mặt năng lượng thì công suất nhiễu nhiệt nhỏ hơn công suất tín hiệu và

nhỏ hơn công suất nhiễu giao thoa liên thuê bao. Nhưng công suất nhiễu giao thoa

liên thuê bao và công suất tín hiệu là ngang nhau.

Để đánh giá chất lượng tín hiệu thu được ta xét tỷ số SINR (Signal

Interference to Noise Ratio). Tỷ số SINR của một thuê bao hay một trạm gốc (BS)

là tỷ số của tín hiệu nhận được với tổng tín hiệu can nhiễu và tạp âm nhiệt của

người nhận:

[3-3]

Nếu các trạm BS biết được suy hao, can nhiễu và mức độ tạp âm tại

người dùng khi phát tín hiệu trên anten đa hướng thì nó có thể ước lượng được

SINR tại đó.

Đối với các tín hiệu thu được y1, y2 ở trên thì SINR se thấp (bằng 0 hoặc

dưới 0) do đó BER se không đạt yêu cầu. Như vậy, nếu không xử lý tín hiệu tại

trạm gốc thì tín hiệu thu được luôn bị ảnh hưởng của nhiễu giao thoa liên thuê bao

làm cho chất lượng hệ thống giảm. Trong thực tế, hệ thống kỳ vọng phục vụ rất

nhiều thuê bao nên công suất nhiễu se rất lớn do đó cần có giải pháp khắc phục vấn

đề này. Với kỹ thuật tiền mã hóa, hệ thống se tiết kiệm băng tần, thời gian, tăng

hiệu suất tần số nhưng vẫn loại bỏ được thành phần nhiễu giao thoa liên thuê bao.

3.3.2 Phân loại các kỹ thuật tiền mã hóa

Kỹ thuật tiền mã hóa được phân chia thành 2 loại là tuyến tính và phi tuyến.

Trong đó:

- Kỹ thuật tiền mã hóa tuyến tính gồm các phương pháp: Zero-Forcing

(ZF) và Block Diagonalization (BD).

- Kỹ thuật tiền mã hóa phi tuyến gồm các phương pháp: Dirty Paper

Coding( DPC) và Tomlinson – Harashima (TH).

[ ][ ] 10lg

[ ] [ ]

Carrier WSINR dB

Interference W Nosie W

Page 58: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

44

Kỹ thuật tiền mã hóa ZF được dùng để khử những tín hiệu nhiễu không

mong muốn tại máy thu.

Kỹ thuật tiền mã hóa DPC loại bỏ nhiễu giao thoa xuyên kênh ở mỗi thuê

bao dựa trên thông tin về mối liên hệ nhiễu của mỗi người dùng tại trạm phát. Các

phương pháp phi tuyến rất phức tạp nên việc thực hiện là rất khó khăn.

3.3.3 Kỹ thuật tiền mã hóa cho hệ thống MIMO-OFDM

Trong hệ thống MIMO, máy phát sử dụng nhiều anten để truyền tín hiệu với

máy thu (một máy thu có thể có nhiều anten), đây chính là kỹ thuật SDMA. Hệ

thống này kết hợp với sử dụng kỹ thuật OFDM se làm tăng đáng kể năng lực truyền

thông băng rộng hông dây. Mô hình tiền mã hóa trong hệ thống SDMA-OFDM

được thể hiện như ở hình dưới đây:

Hình 3.4: Mô hình hệ thống SDMA-OFDM

Page 59: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

45

Thông tin trạng thái kênh truyền được đưa về trạm phát có thể bị lỗi do ước

lượng và lượng tử hóa. Thông tin không chính xác se làm giảm dung lượng hệ

thống như là làm xen nhiễu giữa các dòng dữ liệu hay làm giảm chất lượng thông

tin truyền tải. Đáp ứng kênh truyền phản hồi quyết định tiền mã hóa có tính khả thi

hay không. Mỗi người sử dụng phản hồi hoàn toàn trạng thái kênh truyền hay một

thông số như độ lợi kênh về trạm phát. Nếu thông tin kênh truyền được phản hồi

trở về với độ chính xác cao thì có thể thiết kế hệ thống với thông tin kênh truyền

đầy đủ và mất mát hiệu suất thấp. Lượng tử hóa và phản hồi của thông tin trạng thái

kênh truyền được dựa trên vectơ lượng tử hóa.

3.4. KỸ THUẬT TIỀN MÃ HÓA ZERO FORCING

Xét hệ thống sử dụng kỹ thuật tiền mã hóa ZF sau:

Page 60: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

46

Hình 3.5: Sơ đồ hệ thống ZF

Trong hệ thống này, tín hiệu phát s1 và s2 được nhân thêm trọng số W trước

khi phát ra anten. Do đó tín hiệu thu được se là:

[3-4]

[3-5]

Các thành phần mong muốn đối với thuê bao User 1 và User 2 lần lượt là

1 1, 1,

1

M

m m

m

s w h

và 2 2, 2,

1

M

m m

m

s w h

còn các thành phần khác là nhiễu không mong

muốn.

Một cách tổng quát, tín hiệu thứ u trong hệ thống có thể được xác định như sau:

[3-6]

Thành phần ' ', ,

1

M

u u m u m

m

s w h

chính là nhiễu giao thoa liên thuê bao (inter-user

interference) làm giảm hiệu suất của hệ thống. Như vậy ta cần loại bỏ thành phần

này. Để làm được điều này, chúng ta đi tìm các hệ số trọng số 2

, 1u m uw

để nó

bằng 0. Kỹ thuật này gọi là Zero-forcing.

Thuật toán cụ thể:

Tín hiệu phát tại máy phát sử dụng M anten: x = Ws

Ma trận W nhân vào tín hiệu trước khi phát để loại bỏ nhiễu giao thoa liên

thuê bao, tín hiệu thu được tại máy thu với hệ thống có U thuê bao, M anten phát:

y = HWs + z [3-7]

Trong đó:

2 2 2, 2, 1 1, 2, 2

1 1

M M

m m m m

m m

y s w h s w h z

, , ' ', ,

1 1

M M

u u u m u m u u m u m u

m m

y s w h s w h z

1

s

U

s

s

1,1 1,

,1 ,

H=

M

U U M

h h

h h

1 1 1, 1, 2 2, 1, 1

1 1

M M

m m m m

m m

y s w h s w h z

Page 61: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

47

Với

Để loại bỏ nhiễu giao thoa liên thuê bao thì ma trận W được xác định như

sau:

[3-8]

Tín hiệu thu được được biễu diễn lại như sau:

y = HWs + z = s + z [3-9]

Tín hiệu nhận được sau khi thực hiện tiền mã hóa ZF là:

y = Hx + z [3-10]

Với

3.5. KỸ THUẬT TIỀN MÃ HÓA BLOCK DIAGONALIZATION

Kỹ thuật tiền mã hóa Block Diagonalization (BD) là một trong những

phương pháp tối ưu để ngăn chặn sự xen lẫn dữ liệu khi thu. Vì khi thuê bao sử

dụng nhiều anten thu thì ngoài việc chịu ảnh hưởng của nhiễu giao thoa liên thuê

bao, tại đầu thu thuê bao còn chịu nhiễu liên anten. Trong kỹ thuật này thì tín hiệu

được xử ly trước ở bên phát.

Xét hệ thống gồm K thuê bao, số anten phát tại trạm gốc là NT, số anten thu

tại mỗi thuê bao là NR (NR>1) có tín hiệu phát ứng với thuê bao thứ u là ux , đáp

ứng kênh truyền giữa trạm gốc và thuê bao thứ u là Hu. Tín hiệu thu được tại thuê

bao thứ u (u = 1, 2,…, K) là:

[3-11]

1

s

U

s

s

1,1 ,1

1

1, ,

W ,...,

U

U

M U M

w w

w w

w w

,1 ,w w ,..., wT

u u u M 1z ,...,

T

u Mz z

1W H (HH )H H

1x = ,..., WsT

Mx x

1 1, #

K K

u u k k u u u u u k k u

k k k u

y H W x z H W x H W x z

Page 62: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

48

Với Wu là ma trận tiền mã hóa của thuê bao thứ u và zu là vector nhiễu .

Trong trường hợp K=3 (ứng với 3 thuê bao) thì tín hiệu thu được có dạng:

[3-12]

[3-13]

Ta thấy rằng u kH W là ma trận kết hợp đáp ứng kênh cho thuê bao thu

thứ u và tín hiệu phát cho thuê bao thứ k do đó #u k u k

H W chính là thành phần

không mong muốn và cần loại bỏ, kỹ thuật BD se làm cho nó bằng ma trận zero.

Với #

0 , #R Ru k N Nu k

H W u k thì tín hiệu thu được là:

[3-14]

Khi đó, ma trận đáp ứng kênh gồm tất cả các đáp ứng kênh (trừ đáp ứng

kênh của thuê bao thứ u) có thể viết lại như sau:

[3-15]

Ta phải tính toán sao cho :

[3-16]

Khi đó tín hiệu thu được là:

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

y H H H W x z

y H H H W x z

y H H H W x z

1 1 1 2 1 3 1 1

2 1 2 2 2 3 2 2

3 1 3 2 3 3 3 3

H W H W H W x z

H W H W H W x z

H W H W H W x z

u u u u uy H W x z

1 1 1

KH H H H

u u u KH H H H H

.0

R R Ru u u N N N

H W

Page 63: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

49

[3-17]

Thuật toán BD se đi thiết kế ma trận tiền mã hóa để thỏa mãn [3-16]. Giả sử

số lượng anten phát bằng tổng số anten thu ở các thuê bao NT = K.NR Khi đó các

giá trị đơn SVD của uH được tính như sau:

[3-18]

Ta có:

Ta có thể thấy zero

u uW V được sử dụng làm ma trận tiền mã hóa cho thuê

bao u. Xét ví dụ đơn giản với NT = 4, K = 2 và NR,1 = NR,2 =2 để thấy rõ hơn. Với

u={1,2} thì:

[3-19]

Từ (3.19) ta có:

1 1 1 1 1

2 1 2 2 2

3 3 3 3 3

0 0

0 0

0 0

y H W x z

y H W x z

y H W x z

1 1 13 14

2 2 23 24

zero

zero

W V V V

W V V V

Hnon zero zero

u u u u uH U V V

0

0

( )0

non zero H

uzero non zero zero

Hu u u uzero

VH V U V

V

H

non zero non zero zero

u u u uU V V

0 0non zero

u uU

Hnon zero zero

u u u u uH U V V

1

1 2 1 2 3 4

2

0 0 0

0 0 0

Hu

u u u u u u

u

u u V V V V

Page 64: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

50

Tín hiệu phát tại trạm gốc là: 1 1 2 2x W x W x

Tín hiệu hiệu thu ở thuê bao thứ nhất là:

[3-20]

Từ phương trình [3-20] tín hiệu khôi phục tại thuê bao gần giống với tín hiệu

phát. Đối với thuê bao hai, cách tìm cũng tương tự.

3.6. KỸ THUẬT TIỀN MÃ HÓA DIRTY PAPER CODING

Kỹ thuật tiền mã hóa DPC sử dụng mối liên hệ lẫn nhau của nhiễu giữa các

người dùng tại trạm phát. Với kỹ thuật này thì ảnh hưởng của nhiễu được loại bỏ

tùy vào lượng nhiễu được biết ở máy phát. DPC được thực hiện khi thông tin kênh

truyền hoàn hảo bên phát để thực hiện tiền mã hóa nhằm loại bỏ sự xen lẫn dữ liệu

giữa các thuê bao ở đầu thu. DPC là một kỹ thuật phi tuyến nên việc thực hiện rất

khó khăn và đòi hỏi xử lý phức tạp khi số lượng thuê bao tăng lên cao.

Để đơn giản hóa việc mô tả kỹ thuật DPC, ta xét hệ thống với số anten tại

trạm phát là NT = 3, số thuê bao K = 3, số anten của mỗi thuê bao NR,u = 1, tín hiệu

thu được tại đầu thu được biểu diễn như sau:

[3-21]

Với Hu là đáp ứng kênh truyền giữa trạm phát và thuê bao thứ u xem như đã

biết ở bên phát. Đáp ứng kênh H có thể được viết dưới dạng ma trận LQ (LQ-

decomposed) như sau:

[3-22]

1 1 1

1 1 1 2 2 1

1 1 1 1 2 2 1

1 1 1 1

y H x z

H W x W x z

H W x H W x z

H W x z

1 1 1 1

2 2 2 2

3 3 3 3

y H x z

y H x z

y H x z

11 1

21 22 2

31 32 33 3

0 0

0

QL

l q

H l l q

l l l q

Page 65: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

51

Nếu gọi x = [x1 x2 x3]T là tín hiệu được tiền mã hóa từ tín hiệu phát x thì

khi truyền tín hiệu Hx Q x , ảnh hưởng của ma trận Q se bị loại bỏ khi qua kênh

truyền. Tín hiệu bên thu se là:

[3-23]

Tách ma trận L ra khỏi thành phần đáp ứng kênh là ta đã loại bỏ được thành

phần nhiễu của kênh truyền đối với tín hiệu tại đầu thu.

Với hệ thống mô tả như ở phần trên, ta se đi khôi phục tín hiệu ở đầu thu.

Tín hiệu thu của thuê bao thứ nhất:

1 11 1 1y l x z [3-24]

Yêu cầu tín hiệu nhận được không bị nhiễu giao thoa, đối với thuê bao thứ nhất thì:

[3-25]

Khi đó tín hiệu thu được của thuê bao thứ 2 là:

[3-26]

Ta thấy việc thực hiện tiền mã hóa đối với tín hiệu phát thứ 2 là loại bỏ các nhiễu

liên quan ở bên phát. Do đó:

[3-27]

Tín hiệu thu ở thuê bao thứ 3 là:

[3-28]

1 1 1 11 1 1

2 2 2 21 22 2 2

3 3 3 31 32 33 3 3

0 0

0H

y H z l x z

y H Q x z l l x z

y H z l l l x z

1 1x x

2 21 1 22 2 2 21 1 22 2 2y l x l x z l x l x z

21 212 2 1 2 1

22 22

l lx x x x x

l l

3 31 1 32 2 33 3 3y l x l x l x z

Page 66: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

52

Với việc thực hiện tiền mã hóa, loại bỏ nhiễu thì:

[3-29]

Từ các phương trình (3.25), (3.27), (3.29) ta có thể viết lại như sau:

[3-30]

[3-31]

[3-32]

Phương pháp DPC có thể được mô tả lại như sau:

[3-33]

31 323 3 1 2

33 33

l lx x x x

l l

1 1

2 2

3 3

1 0 0

0 1 0

0 0 1

x x

x x

x x

1 1

212 2

22

3 3

1 0 0

1 0

0 0 1

x xl

x xl

x x

1 1

2 2

3 31 32 3

33 33

1 0 0

0 1 0

1

x x

x x

x l l x

l l

1 1

212 2

22

3 31 32 3

33 33

1 0 01 0 0 1 0 0

0 1 0 1 0 0 1 0

0 0 11 0 0 1

x xl

x xl

x l l x

l l

1

212

22

3

31 32 3221

33 33 22 33

1 0 0

1 0

1

xl

xl

xl l ll

l l l l

Page 67: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

53

Tín hiệu thu tại các thuê bao:

[3-34)

Như vậy ma trận tiền mã hóa trong phương pháp DPC có thể tìm được từ khối ma

trận tam giác L như sau:

[3-35]

3.7. KỸ THUẬT TIỀN MÃ HÓA TOMLINSON-HARASHIMA

DPC bên trạm phát rất giống với bộ cân bằng hồi tiếp quyết định (DFE) bên

trạm thu. Khi kết hợp DPC với phép toán modulo đối xứng tương ứng với tiền mã

hóa Tomlinson-Harashima. Mục đích ban đầu của tiền mã hóa TH là giảm công suất

đỉnh hoặc trung bình trong bộ DFE, bằng cách triệt tiêu ISI tại trạm phát. Phương

pháp này cần có thông tin hoàn hảo về đáp ứng xung của kênh truyền, trong khi đáp

ứng này chỉ được hồi tiếp về từ trạm thu đối với kênh truyền không thay đổi theo

thời gian, hoặc thay đổi chậm. Để thực hiện y tưởng đó, ta se xem xét tiền mã hóa ở

trường hợp 1 chiều, trong đó ky tự dữ liệu x được lấy từ chòm sao PAM M mức {-

1 11 1 1

212 21 22 2 2

22

3 31 32 33 3 3

31 32 3221

33 33 22 33

1 0 00 0

0 1 0

1

y l x zl

y l l x zl

y l l l x zl l ll

l l l l

11 1 1

22 2 2

33 3 3

0 0

0 0

0 0

l x z

l x z

l x z

1

11 11

2121 22 22

22

31 32 33 33

31 32 3221

33 33 22 33

1 0 00 0 0 0

1 0 0 0 0

0 0

1

l ll

l l ll

l l l ll l ll

l l l l

Page 68: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

54

(A-1), -(A-3),…,-3,-1,1,3,…(A-3),(A-1)} với A là số nguyên chẵn với .

Ký tự mở rộng c được định nghĩa như sau, với m là số nguyên:

[3-36]

Để giảm công suất đỉnh hoặc trung bình, m trong phương trình [3-36] se phải

chọn tối thiểu biên độ của ký tự mở rộng c tại trạm phát. Lưu y ky tự ban đầu x se

được khôi phục từ ký tự mở rộng c bằng phép tính modulo đối xứng sau:

[3-37]

Để áp dụng tiền mã hóa TH vào hệ thống MIMO đa người dùng, thì phải áp

dụng phép toán modulo đối xứng cho ký tự điều chế QAM M mức, nên phương

trình [3-37]) se được mở rộng cho 2 chiều. trong QAM M mức với chòm sao dạng

vuông, phần thực và ảo của ký tự se nằm trong [-A,A) với

. Với M=16 mức, thì A=4, phép tính modulo tuyến tính trường hợp này

được tính như sau:

[3-38]

Phép tính modulo trên có thể quy thành phép toán tìm hai số nguyên m và n

sao cho thỏa các bất đẳng thức sau:

[3-39]

Với hai số phức x1 và x2 trong [3-39] được định nghĩa:

[3-40]

Phương trình [3-38] thành:

[3-41]

Áp dụng cho tiền mã hóa TH với K=3. Giả sử biễu diễn cho tín

hiệu đã được mã hóa TH cho thuê bao thứ u. Từ các phương trình [3-25], [3-27], [3-

29], và phép toán modulo trên, ký tự sau khi mã hóa TH được biễu diễn:

[3-42]

Page 69: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

55

[3-43]

[3-44]

Kết hợp với [3-41], các biểu thức viết lại thành:

[3-45]

[3-46]

[3-47]

Với tín hiệu phát , tín hiệu thu se là:

[3-48]

Vì nên tín hiệu cho thuê bao 1 đã rõ ràng. Tín hiệu thu cho thuê bao

2:

[3-49]

Từ phương trình [3-46], phương trình [3-49] viết lại:

[3-50]

Giả sử tỷ lệ với , khi đó:

[3-51]

Tín hiệu thuê bao thứ 2 có thể khôi phục bằng phép toán modulo:

Page 70: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

56

[3-52]

Nếu nhiễu trong phương trình [3-52] đủ nhỏ để có điều kiện:

[3-53]

Thì phương trình [3-52] thành:

[3-54]

Từ phương trình [3-48], tín hiệu thu của thuê bao thứ 3 là

[3-55]

Từ phương trình [3-47], tín hiệu thu trên viết lại:

[3-56]

Tương tự , tín hiệu thuê bao thứ 3:

[3-57]

Trong đó:

3.8. LỰA CHỌN THUÊ BAO

Trong hệ thống MIMO thì tổng số anten của thuê bao bị giới hạn bởi số

anten phát của trạm gốc. Để giải quyết vấn đề này, một trong những giải pháp được

đưa ra là lựa chọn người dùng. Việc chọn ra một nhóm người sử dụng với thông tin

kênh truyền tốt hơn se giúp cho việc ước lượng kênh và khôi phục tín hiệu có hiệu

quả hơn. Vì vậy với giải pháp này se giúp nâng cao dung lượng cũng như chất

Page 71: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

57

lượng của hệ thống. Kỹ thuật lựa chọn người dùng dựa trên phân tích các giá trị đơn

SVD của thông tin kênh truyền để tìm ra ma trận kênh truyền tối ưu.

Trong kỹ thuật tiền mã hóa Zero-forcing, ta thực hiện phân tích giá trị đơn

của HH U U . Với 1,..., NTdiag là ma trận đường chéo bao gồm các giá trị

đơn của ma trận H. Lựa chọn các giá trị 1,..., N nhỏ nhất để tối thiểu hóa mức

fading trên kênh truyền.

Trong kỹ thuật DPC, để lựa chọn người dùng cần dựa trên ma trận L. Xét hệ

thống đơn giản có số anten tại trạm phát NT = 4, số thuê bao K = 10. Chọn ra nhóm

4 người dùng tốt nhất * * * *

1 2 3 4, , ,u u u u trong số 10 thuê bao thỏa điều kiện:

[3-58]

Việc lựa chọn iil lớn nhất là để tối thiểu hóa nhiễu tại đầu thu.

3.9. KẾT LUẬN CHƯƠNG

Kỹ thuật tiền mã hóa trong hệ thống MIMO-OFDM giúp hệ thống nâng cao

dung lượng và cải thiện chất lượng của hệ thống. Qua chương này ta thấy được khả

năng loại bỏ nhiễu, đặc biệt là nhiễu giao thoa liên thuê bao của kỹ thuật tiền mã

hóa với các phương pháp khác nhau như ZF, BD, DPC, TH. Các phương pháp tiền

mã hóa càng chính xác thì độ phức tạp càng cao, do đó tùy theo yêu cầu của hệ

thống mà chọn phương pháp cho phù hợp. Ngoài ra để tối ưu kênh truyền, việc sử

dụng kỹ thuật lựa chọn người dùng là một giải pháp được áp dụng. Với việc chọn ra

nhóm người sử dụng có kênh truyền tốt hơn se giúp nâng cao dung lượng và chất

lượng hệ thống. Để thấy rõ hơn những ưu, nhược điểm của các kỹ thuật tiền mã

hóa, chúng ta se đi mô phỏng hệ thống ở chương sau.

* * * * * * * *1 1 2 2 3 3 4 4

uuu u u u u u u ul l l l l

Page 72: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

58

CHƯƠNG 4. CHƯƠNG TRÌNH MÔ PHỎNG VÀ KẾT QUẢ

4.1. GIỚI THIỆU CHƯƠNG

Để kiểm chứng sự rõ ràng về hiệu quả của các phương pháp tiền mã hóa trên,

chương này se trình bày các kết quả mô phỏng và tiến hành so sánh các phương

pháp. Trong chương này se thực hiện mô phỏng các kỹ thuật tiền mã hóa ZF, BD,

DPC, THC bằng phần mềm Matlab phiên bản 2010b so sánh dựa trên thông số tỷ lệ

lỗi bit BER theo sự thay đổi của SNR từ 0 đến 20. Ngoài ra, trong chương này tác

giả mô phỏng hệ thống sử dụng kỹ thuật ZF và DPC khi thay đổi số lượng thuê bao.

Qua đó, đưa ra những nhận xét và đánh giá về hiệu quả của các kỹ thuật.

Page 73: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

59

4.2. LƯU ĐỒ THUẬT TOÁN

Bắt đầu

Khởi tạo các thông số ban đầu

Số thuê bao, số khung, số gói, số bit,

số anten thu phát, mức điều chế, SNR

Tạo thông tin kênh truyền

i=1

- Tạo tín hiệu phát, tính công suất tín hiệu

- Điều chế tín hiệu

- Tính ma trận tiền mã hóa W

- Cộng nhiễu nhiệt N0, dẫn qua kênh truyền

- Giải điều chế

- Tính tổng số bit lỗi

Tính BER

Ve đồ thị

Kết thúc

i > length(SNR)) ? i ++

Hình 4.1: Lưu đồ thuật toán chương trình chính thực hiện các kỹ thuật

tiền mã hóa

Page 74: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

60

Hình 4.2: Lưu đồ thuật toán tính BER của hệ thống

4.3. KẾT QUẢ VÀ NHẬN XÉT

Sau đây là kết quả của các quá trình mô phỏng hệ thống thông qua chương trình

mô phỏng Matlab.

4.3.1. Khảo sát BER của các kỹ thuật tiền má hóa tuyến tính

Các thông số mô phỏng: Số anten phát NT=4, số khung N_frame=10, số gói

tin N_packet=5000, điều chế QPSK, 4 thuê bao.

Page 75: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

61

Hình 4.3: BER của các kỹ thuật tiền mã hóa tuyến tính

Nhận xét

- BER của hệ thống giảm khi tăng tỉ số tín hiệu trên nhiễu.

- BER của phương pháp BD là tốt hơn so với phương pháp ZF ở cùng một

mức SNR. Vì phương pháp BD sử dụng 2 anten ở thuê bao trong khi với ZF

là 1 nên phía thu có sự chọn lọc tín hiệu tốt hơn.

4.3.2. Khảo sát BER của các kỹ thuật tiền mã hóa

Các thông số mô phỏng: Số anten phát NT=4, số khung N_frame=10, số gói

tin N_packet=5000, điều chế QPSK, 4 thuê bao.

Page 76: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

62

Hình 4.4: BER của các kỹ thuật tuyến tính và phi tuyến

Nhận xét:

- BER của hệ thống giảm khi tăng tỉ số tín hiệu trên nhiễu.

- Cùng một mức SNR thì BER của phương pháp DPC là tốt nhất. Bởi vì

phương pháp DPC thiết kế ma trận tiền mã hóa không chỉ dựa trên thông tin trạng

thái kênh truyền hồi tiếp về mà còn dựa vào mối liên hệ lẫn nhau giữa tín hiệu phát

đến các thuê bao,. Với việc biết trước được thông tin các tín hiệu phát nên phương

pháp DPC có số bit lỗi ít nhất. Các phương pháp ZF, BD thiết kế ma trận tiền mã

hóa chỉ dựa vào thông tin kênh truyền hồi tiếp của hệ thống nên se thiếu chính xác

hơn do đó BER cao hơn.

4.3.3. Khảo sát BER của các kỹ thuật tiền mã hóa phi tuyến

Các thông số mô phỏng: Số anten phát NT=4, số khung N_frame=10, số gói

tin N_packet=5000, điều chế QPSK, 4 thuê bao.

Page 77: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

63

Hình 4.5: BER của kỹ thuật tiền mã hóa phi tuyến.

Nhận xét:

- DPC cho kết quả tốt hơn TH, vì trong so sánh này, công suất phát của DPC

cao hơn so với TH. Điều này được giải thích là do một phần công suất phát của

THP được dành cho modulo trong quá trình mã hóa.

4.3.4. Khảo sát BER của các kỹ thuật khi thay đổi số thuê bao

Các thông số mô phỏng: Số anten phát NT=4, số khung N_frame=10, số gói

tin N_packet=4000, điều chế QPSK, số lượng thuê bao thay đổi là 4, 10, 20, 30.

Page 78: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

64

Hình 4.6: BER của kỹ thuật ZF khi thuê bao thay đổi.

Nhận xét

- BER của hệ thống giảm khi số thuê bao tăng lên ở cùng một mức SNR. Vì

khi số lượng thuê bao lớn thì ảnh hưởng của fading kênh truyền tới mỗi thuê bao là

khác nhau, việc lựa chọn nhóm người dùng có thông tin trạng thái kênh truyền tốt

se tối thiểu hóa ảnh hưởng của fading, do đó BER của hệ thống được cải thiện khi

số thuê bao tăng lên.

- BER của hệ thống se tiệm cận đến một mức giới hạn khi số lượng thuê bao

tăng lên. Bởi vì khi lựa chọn được nhóm người dùng tốt nhất thì ảnh hưởng của

fading kênh truyền không biến thiên nhiều. Do đó BER của hệ thống se không thay

đổi nhiều khi số thuê bao tăng cao.

Page 79: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

65

Hình 4.7: BER của kỹ thuật DPC khi thuê bao thay đổi

4.4. KẾT LUẬN CHƯƠNG

Chương cuối này đã thực hiện mô phỏng so sánh BER của các phương pháp

tiền mã hóa. Bằng cách thay đổi SNR, và số lượng thuê bao của hệ thống để khảo

sát BER nhằm đưa ra đánh giá so với lý thuyết. Thông qua mô phỏng nhận thấy

được các phương pháp tốt dần theo thứ tự ZF, BD, DPC.

Page 80: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

66

KẾT LUẬN VÀ HƯỚNG PHÁT TRIỂN ĐỀ TÀI

1. KẾT LUẬN

Kỹ thuật tiền mã hóa với ưu điểm vượt trội là loại bỏ nhiễu giao thoa các tín

hiệu nhận giữa các thuê bao khác nhau, giữa các anten thu trong cùng một thuê bao

đã góp phần đáng kể vào việc cải thiện chất lượng của hệ thống MIMO-OFDM

đang được ứng dụng rất nhiều trong các hệ thống viễn thông tốc độ cao.

Trong quá trình nghiên cứu kỹ thuật tiền mã hóa trong hệ thống MIMO-

OFDM, báo cáo đã tập trung vào các phương pháp phổ biến như ZF, BD, DPC, TH.

Bên cạnh đó, báo cáo cũng trình bày về kỹ thuật OFDM, hệ thống MIMO, kênh

truyền vô tuyến nhằm có cái nhìn toàn diện hơn về hệ thống MIMO-OFDM. Ngoài

ra báo cáo cũng đề cập đến kỹ thuật SDMA, một kỹ thuật đa truy cập phân chia theo

không gian, góp phần giảm được hiện tượng giao thoa tần số, nhiễu đồng kênh,

nhiễu đa đường, tăng dung lượng hệ thống. Hiện nay SDMA được sử dụng rộng rãi

và mang lại lợi ích to lớn.

2. HƯỚNG PHÁT TRIỂN ĐỀ TÀI

Do thời gian có hạn nên Báo cáo chỉ khảo sát các kỹ thuật tiền mã hóa tuyến

tính gồm Zero-forcing, Block Diagonalization và phi tuyến gồm Dirty Paper Coding

và Tomlison- Harashima Coding trong hệ thống MIMO đa người dùng. Vì vậy

hướng phát triển tiếp theo của Đề tài là nghiên cứu kết hợp các kỹ thuật tiền mã hóa

khác, và ứng dụng kỹ thuật này cho các hệ thống MIMO cỡ lớn.

Page 81: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

67

DANH MỤC TÀI LIỆU THAM KHẢO

[1] Andrea Goldsmith, Wireless Communication, Cambridge University Press,

2005.

[2] Jin Wangl, Shaoqian Li và Lei Li, Performance evaluation of

precoding spatial modulation OFDM on a LTE channel Communication

Technology (ICCT), IEEEE 14th International Conference, pp. 1188-1192, 2012.

[3] Quentin H. Spenver và Christian B. Peel, An introduction to the

multi-user MIMO downlink. In: Editor, IEEE Communication Magazines, pp-

60-67, 2006.

[4] Yuansheng Jin and Xiang-Gen Xia: An Interference Nulling based

channel independent precoding for MIMO-OFDM systems with

insufficient cyclic prefix. IEEE Transactions on Communications,

VOL. 61, NO. 1, January 2013.

[5] Ping Yang et al: Initial performance evaluation of spatial

modulation OFDM in LTE based systems. 6th International ICST

Conference on Communications and Networking in China

(CHINACOM), pp. 101-107, August 2011.

[6] Thomas Ketseoglou; Ender Ayanoglu, Linear Precoding Gain for Large MIMO

Configurations with QAM and Reduced Complexity, 2016 IEEE Global

Communications Conference (GLOBECOM), 2016.

[7] Theodore S. Rappaport, Wireless Communication Principles and Practice,

Second Edition, Prentice Hall, 2002.

[8] Ali M. A. Ibrahim; Murtada M. Abdelwahab, Sum rate analysis of massive

Multiple Input Multiple Output system for linear precoding using normalization

Page 82: NGHIÊN CỨU KỸ THUẬT TIỀN MÃ HÓA TRONG HỆ THỐ ố

68

methods, 2017 International Conference on Communication, Control,

Computing and Electronics Engineering (ICCCCEE), 2017.

[9] Ayman Mostafa; Lutz Lampe, On Linear Precoding for the Two-User MISO

Broadcast Channel With Confidential Messages and Per-Antenna Constraints,

IEEE Transactions on Signal Processing, Volume: 65, Issue: 22, Pages: 6053 –

6068, Year: 2017.

[10] Nusrat Fatema; Guang Hua; Yong Xiang; Dezhong Peng; Iynkaran

Natgunanathan, Massive MIMO Linear Precoding: A Survey, IEEE Systems

Journal, Volume: PP, Issue: 99, Pages: 1 – 12, , Year: 2017.

[11] Chan Kaleem, Bing Hui, KyungHi Chang, Achievable rates of SVD-based

codebooks for zero-forcing and Tomlinson-Harashima precoding schemes with

limited feedback MU-MIMO system, International Journal of communication

systems, Volume 30, Issue 7, 10 May 2017.

[12] Dongmei Jiang, Balasubramanium Natarajan, Hybrid precoding with

compressive sensing based limited feedback in massive MIMO systems,

Transactions on Emerging telecommunications technologies, Volume 27, Issue

12, December 2016, Page 1672-1678.