48
第3第 第第第 第第第第第 3.1 自自自自自 自自自自自自自自自 3.2 第第第第第 第第第第第第第第第第第 3.3 第第第 第第第第第 一统 3.4 第第第 第第第第第 3.5 第第第 第第第第第 3.6 第第第3.7 第第第第

第 3 章 线性系统的时域分析

  • Upload
    roxy

  • View
    167

  • Download
    11

Embed Size (px)

DESCRIPTION

第 3 章 线性系统的时域分析. 3.1 自动控制系统时域响应的基本概念 3.2 自动控制系统的稳定性和代数稳定判据 3.3 一阶系统的阶跃响应 3.4 二阶系统的阶跃响应 3.5 二阶系统的时域指标 3.6 高阶系统 3.7 误差分析. 3.1 自动控制系统 时域响应 的基本概念. 1 典型输入信号. 3.1 自动控制系统 时域响应 的基本概念. 2 瞬态响应 指系统在典型输入信号作用下,系统输出量从初始状态到最终状态的响应过程。又称动态过程或过渡过程。 瞬态响应可以提供关于系统稳定性、响应速度及阻尼情况等信息。. - PowerPoint PPT Presentation

Citation preview

Page 1: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 2: 第 3 章  线性系统的时域分析

3.1 自动控制系统时域响应的基本概念

1 典型输入信号

Page 3: 第 3 章  线性系统的时域分析

2 瞬态响应 指系统在典型输入信号作用下,系统输出量从初始状态到最终状态的响应过程。又称动态过程或过渡过程。 瞬态响应可以提供关于系统稳定性、响应速度及阻尼情况等信息。

3 稳态响应 指系统在典型输入信号作用下,当时间 t 趋于无穷时,系统输出量的表现方式。稳态响应又称稳态过程。 稳态响应可以提供系统有关稳态误差的信息。

3.1 自动控制系统时域响应的基本概念

Page 4: 第 3 章  线性系统的时域分析

4 稳定性 若控制系统在初始条件或扰动影响下,其瞬态响应随着时间的推移而逐渐衰减并趋于零,则称系统稳定;反之,不稳定。 控制系统能在实际中应用,其首要条件是保证系统具有稳定性。不稳定的控制系统,当受到外界或其内部一些因素的扰动,如负载或电源的波动,系统的变化等,就会使系统的输出量越来越偏离其平衡状态,即使扰动因素消失,也不可能再恢复到原平衡状态。控制系统的稳定性取决于系统本身的结构和参数,与外加信号无关。

3.1 自动控制系统时域响应的基本概念

Page 5: 第 3 章  线性系统的时域分析

5 误差和稳态误差 控制系统在输入信号的作用下,其输出量中包含瞬态分量和稳态分量两个分量。对于稳定的系统,瞬态分量随时间的推移而逐渐消失,稳态分量则从输入信号加入的瞬时起就始终存在,其表现方式就是稳态响应。稳态响应反映了控制系统跟踪输入信号或抑制扰动信号的能力和精度。这种能力或精度称为系统的稳态性能。一个系统的稳态性能是以系统响应某些典型输入信号时的稳态误差来评价的。

3.1 自动控制系统时域响应的基本概念

Page 6: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 7: 第 3 章  线性系统的时域分析

3.2 稳定性和代数稳定判据 1 稳定性定义

( 1 )当系统受到有界输入作用时,输出也是有界的,称为有界输入有界输出稳定;( 2 )系统没有输入作用,仅在初始条件作用下输出能随时间趋于平衡状态,称为渐近稳定。

系统在有界输入作用下稳定的充分必要条件是系统传递函数分母多项式的根具有负实部。

Page 8: 第 3 章  线性系统的时域分析

2 劳斯-胡维茨判据

劳斯-胡维茨判据就是可以不用求系统特征根而可以判断系统特征根是否具有负实部的方法。

3.2 稳定性和代数稳定判据

( 1 )劳斯判据

011

10

nnnn asasasa

一般地,系统特征方程具有如下形式

编写劳斯表如下 :

Page 9: 第 3 章  线性系统的时域分析

ns 0a 2a 4a 1ns 1a 3a 5a 2ns 1

1

3021 ba

aaaa

2

1

5041 ba

aaaa

3

1

7061 ba

aaaa

3ns 11

2131 cb

baab

2

1

3151 cb

baab

0s

劳 斯 表3.2 稳定性和代数稳定判据

Page 10: 第 3 章  线性系统的时域分析

设系统特征方程为:s6+2s5+3s4+4s3+5s2+6s+7=0

s6

s5

s0

s1

s2

s3

s4

12 4 6

3 5 7(6 - 4)/2=1

1(10-6)/2=2

2 71

0

(6-14)/1= -8

-8

劳斯表介绍

劳斯表特点

2 每两行个数相等1 右移一位降两阶

3 行列式第一列不动4 次对角线减主对角线5 分母总是上一行第一个元素

6 一行可同乘以或同除以某正数

ε2ε+8

3.2 稳定性和代数稳定判据

Page 11: 第 3 章  线性系统的时域分析

劳斯判据如下: 系统特征方程的根全部具有负实部(位于左半 s 平面即系统稳定)的充分必要条件,是该方程式的系数都是正的,且由该方程系数作出的劳斯表第一列元素全部都是正的;否则,第一列元素符号改变的次数,等于特征方程正实部根(位于右半 s 平面)的个数。

3.2 稳定性和代数稳定判据

Page 12: 第 3 章  线性系统的时域分析

劳斯判据系统稳定的必要条件 :

有正有负一定不稳定 !

缺项一定不稳定 !

系统稳定的充分条件 :

劳斯表第一列元素不变号 !若变号系统不稳定 !变号的次数为特征根在 s 右半平面的个数 !

特征方程各项系数均大于零 !

-s2-5s-6=0 稳定吗?

3.2 稳定性和代数稳定判据

Page 13: 第 3 章  线性系统的时域分析

设系统特征方程为:

01422 234 ssssS4 :

S3 :

S2 :

S1 :

S0 :

1 2 1

2 4

0 1

? 用无穷小 ε 代替 0ε

然后继续完成劳斯表

2 - 2ε1

3.2 稳定性和代数稳定判据

Page 14: 第 3 章  线性系统的时域分析

劳斯表出现零行设系统特征方程为: s4+5s3+7s2+5s+6=0

表s0

s1

s2

s3

s4

51 7

56

1 1

6 6

0

1 劳斯表何时会出现零行 ?2 出现零行怎么办 ?3 如何求对称的根 ?

② 由零行的上一行构成辅助方程 :

① 有大小相等符号相反的特征根时会出现零行

s2+1=0对其求导得零行系数 : 2s1

2

1 1

继续计算劳斯表1 第一列全大于零 , 所以系统稳

劳斯表出现零行劳斯表出现零行系统系统一定一定不稳定不稳定

③ 求解辅助方程得 : s1,2=±j

由综合除法可得另两个根为 s3,4= -2,-3

3.2 稳定性和代数稳定判据

Page 15: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 16: 第 3 章  线性系统的时域分析

3.3 一阶系统的时间响应1 一阶系统的数学模型

1

1

)(

)(

1,

1)(

),()()(

TssR

sCs

Tk

s

k

TssG

Ttrtcdt

tdcT

)(闭环传递函数:

为开环增益开环传递函数:

为时间常数。微分方程为:

Page 17: 第 3 章  线性系统的时域分析

结构图和闭环极点分布图为:

T 是表征系统惯性大小的重要参数。

R( s) C( s)k/ s

-

j

0- 1/ T

3.3 一阶系统的时间响应

Page 18: 第 3 章  线性系统的时域分析

2 一阶系统的单位阶跃响应

1

11

1

1)()()(

,1

)()(1)(

Ts

T

ssTssRssC

ssRttr

时,当

3.3 一阶系统的时间响应

Page 19: 第 3 章  线性系统的时域分析

节。惯性环节亦称非周期环,没有超调,非周期响应

进行拉氏反变换对

0%

982.0)4(,4

950.0)3(,3

865.0)2(,2

632.0)(,

1)(

)(/

ThTt

ThTt

ThTt

ThTt

eth

sCTt

3.3 一阶系统的时间响应

Page 20: 第 3 章  线性系统的时域分析

一阶系统时域分析

无零点的一阶系统 Φ(s)= Ts+1k , T 时间常数

( 画图时取 k=1,T=0.5)

k(t)= T1 e-

Tt

k(0)= T1

K’(0)=T

单位阶跃响应

h(t)=1-e-t/T

h’(0)=1/T

h(T)=0.632h(∞)

h(3T)=0.95h(∞)h(2T)=0.865h(∞)

h(4T)=0.982h(∞)

单位斜坡响应

c(t)=t-T+Te-t/T

T

?

r(t)= δ(t) r(t)= 1(t) r(t)= t

问 1 、 3 个图各如何求 T ? 2 、调节时间 ts= ?

3 、 r(t)=at 时, ess= ? 4 、求导关系?

k’(0)=1/T2

3.3 一阶系统的时间响应

Page 21: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 22: 第 3 章  线性系统的时域分析

3.4 二阶系统分析1 二阶系统的数学模型 二阶系统传递函数的标准形式

式中, ξ 为系统的阻尼比 wn为无阻尼振荡频率,简称固有频率(也称自然振荡频率)

22

2

2)(

nn

n

wsws

ws

Page 23: 第 3 章  线性系统的时域分析

闭环特征方程为:

其特征根即为闭环传递函数的极点为

1 )当 0< ξ <1 时,此时系统特征方程具有一对负实部的共轭复根

系统的单位阶跃响应具有衰减振荡特性,称为欠阻尼状态。(如图a)

02 22 nnwsws

12

2,1

nnwws

2

2,11

nnjwws

3.4 二阶系统分析

Page 24: 第 3 章  线性系统的时域分析

1s

2s

nw

0

)(a

2,1s 0

)(b

1s2s 0

)(c

1s

2s

0

)(d

3.4 二阶系统分析

Page 25: 第 3 章  线性系统的时域分析

2 )当 ξ=1 时,特征方程具有两个相等的负实根,称为临界阻尼状态。(如图b)

3 )当 ξ>1 时,特征方程具有两个不相等的负实根,称为过阻尼状态。(如图c)

4 )当 ξ=0时,系统有一对共轭纯虚根,系统单位阶跃响应作等幅振荡,称为无阻尼或零阻尼状态。(如图d)

下面,分过阻尼(包括临界阻尼)和欠阻尼(包括零阻尼)两种情况,来研究二阶系统的单位阶跃响应。

3.4 二阶系统分析

Page 26: 第 3 章  线性系统的时域分析

3.4 二阶系统的时间响应二阶系统单位阶跃响应定性分析 Φ(s)=

s2+2ξωns+ωn2

ωn2

ξ>1:

ξ=1:

0< ξ<1:

ξ= 0:

Page 27: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 28: 第 3 章  线性系统的时域分析

欠阻尼二阶系统动态性能分析与计算

ωdβe -ξωnt

√1-ξ2h(t)= 1 - 1 sin( t+ )

令h(t)=1 取其解中的最小值, π - βωd

得 tr=令 h(t)一阶导数 =0,取其解中的最小值, 得 tp=

π ωd

由 σ%= h(∞)

h(tp) - h(∞)100%

得 σ% = e-πξ/√1-ξ 2100%

由包络线求调节时间 得 ts≈ 3.5ξωn

3.5 二阶系统的时域指标

Page 29: 第 3 章  线性系统的时域分析

欠阻尼二阶系统的 ts

取 sin 项为 ±1 ,则h(t)=1±e-ξωnt

取误差带为△ =±0.05, 则有 e-ξωnt=0.05

由此解出 ts= ln20/√1-ξ2

ξωn

≈ξωn

3.5

3.5 二阶系统的时域指标

Page 30: 第 3 章  线性系统的时域分析

K(t)=Ae-at

零极点分布图:

Φ(s)=

传递函数:A

S+a

0-a

j

0

运动模态 1

3.5 二阶系统的时域指标

Page 31: 第 3 章  线性系统的时域分析

K(t)=Asin(bt+α)

零极点分布图:

t

Φ(s)=

传递函数:A1s+B1

S2+b2

运动模态 3

0

j

b

0

3.5 二阶系统的时域指标

Page 32: 第 3 章  线性系统的时域分析

K(t)=Aeatsin(bt+α)

零极点分布图:

t

Φ(s)=

传递函数:A1s+B1

(S-a)2+b2

0 a

j

b

0

运动模态 4

3.5 二阶系统的时域指标

Page 33: 第 3 章  线性系统的时域分析

K(t)=Aeat

零极点分布图:

t

Φ(s)=

传递函数:A

S-a

0 a

j

0

运动模态 5

3.5 二阶系统的时域指标

Page 34: 第 3 章  线性系统的时域分析

运动模态总结

j

0

j

0

j

0

j

0

j

0

3.5 二阶系统的时域指标

Page 35: 第 3 章  线性系统的时域分析

零点对过阻尼二阶系统的影响

j

0

σ%=33%

3.5 二阶系统的时域指标

Page 36: 第 3 章  线性系统的时域分析

零点对欠阻尼二阶系统的影响

j

0

3.5 二阶系统的时域指标

Page 37: 第 3 章  线性系统的时域分析

附加极点对系统的影响j

0

j

0

j

0

j

0

结论 1 :增加极点是削弱了阻尼 还是增加了阻尼?结论 2 : 增加的极点越靠近原点越怎样?

3.5 二阶系统的时域指标

Page 38: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 39: 第 3 章  线性系统的时域分析

高阶系统

(s2+2s+5)(s+6)30Φ1(s) = (s2+2s+5)

5Φ2(s) =

增加极点对 ξ有何影响?

主导极点

σ %= 19.1% ts= 3.89s

σ %= 20.8% ts= 3.74s

3.6 高阶系统

Page 40: 第 3 章  线性系统的时域分析

偶极子Φ1=

(s+2)2+42

20

Φ2= [(s+2)2+42](s+2)(s+3)

120

Φ3= [(s+2)2+42](s+2)(s+3)

3.31[(s+2)2+4.52]

结论结论 11 :增加极点有何影:增加极点有何影响?响?

结论 2 :偶极子有何作用?

Φ4= (s+2)(s+3)

6

3.6 高阶系统

Page 41: 第 3 章  线性系统的时域分析

第 3 章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析

Page 42: 第 3 章  线性系统的时域分析

3.7 误差分析

1 稳态误差的概念 2 稳态误差的计算3 稳态误差系数 4 减小稳态误差的方法

Page 43: 第 3 章  线性系统的时域分析

3.7 误差分析1 稳态误差的概念误差定义 某个量和其期望值之间的差,或某两个量之间的差。稳态误差 就是误差信号 当 时的值

2 稳态误差的计算 知道了误差 的拉氏变换 ,则利用终值定理,有

sse )(te t

)(te )(sE

)(lim)(lim0

ssEteest

ss

Page 44: 第 3 章  线性系统的时域分析

误差分析

1 误差定义

G(s)

H(s)

R(s) E(s) C(s)

B(s)

输入端定义:E(s)=R(s)-B(s)=R(s)-C(s)H(s)

G(s)H(s)R(s) E(s) C(s)

H(s)

1 R(s)ˊ ˊ

输出端定义:E(s)=C 希 -C 实 = -C(s)

R(s)H(s)

ˊ

G(s)

R(s) E(s) C(s)

C(s)

E(s)=R(s)-C(s)

G1(s)

H(s)

R(s) C(s)G2(s)

N(s)

En(s)=C 希 -C 实 = –Cn

(s)总误差怎么求?

2 例题求图示系统的稳态误差 ess 。

2

R(s) C(s)

N(s)

0.2s+11

s(s+1)2

其中 r(t)=t, n(t)= -1(t)

解:令n(t)=0,

= s(s+1)(0.2s+1)+40.5s(s+1)(0.2s+1) s2

. 1

因为系统稳定,所以

essr=limsEr(s)=s→0

81

令 r(t)=0,

En(s)= -Cn(s)

= s(s+1)(0.2s+1)+4 2(0.2s+1)

s. 1

essn=limsEn(s)= 21

s→0

总误差 ess=essr+ essn

∴ess= 81

21

+ 85=

Page 45: 第 3 章  线性系统的时域分析

设开环传递函数 k ∏(τis+1)i =1

m

sν ∏(Tjs+1) j=1

n -νG(s)H(s)=

sν 表示开环有 ν 个极点在坐标原点k 为开环增益

称为Ⅰ型系统称为Ⅱ型系统

称为 0 型系统

称为Ⅲ型系统

ν=0ν=1ν=2ν=3

3 系统型别

Page 46: 第 3 章  线性系统的时域分析

典型输入下的稳态误差与静态误差系数

G(s)H(s)R(s) E(s) C(s)

E(s)=R(s)

1+G(s)H(s)

1

若系统稳定 ,则可用终值定理求 es

sess= lim s1+ k

sν G0H0

R(s)→0s

R(s)=R/sr(t)=R·1(t)

ess= 1+ k

Rlim

→0s

r(t)=R·t R(s)=R/s2

ess= s·

Rlim

→0sksν

r(t)=Rt2/2 R(s)=R/s3

ess= s2·

Rlim

→0sksν

3.7 误差分析

Page 47: 第 3 章  线性系统的时域分析

取不同的 ν

r(t)=R·1(t)

ess= 1+ k

Rlim

→0sr(t)=R·t

ess= s·

Rlim

→0s

ksν

r(t)=Rt2/2

ess= s2·

Rlim

→0s

ksν

Ⅰ 型

0 型

Ⅱ 型

R·1(t)

R1+ k

R k

R k

R·t

0 0 0

∞ ∞

Rt2/2 R·1(t)

R·t Rt2/2

k

k

k

0

00

∞∞

小结:123

Kp=?Kv=?Ka=?

非单位反馈怎么办?

3.7 误差分析

Page 48: 第 3 章  线性系统的时域分析

The End