66
第第第 第第第第第第 第第第第第第第 第第第第第第第第第第 第第第 第第第第第第第第 第第第 第第第第第第第第 第第第 第第第第第第第第第第第 第第第 第第第第第第第

第四章 微生物细胞的 化学组成与营养

Embed Size (px)

DESCRIPTION

第四章 微生物细胞的 化学组成与营养. 第一节 微生物细胞的化学组成 第二节 微生物的营养需要 第三节 微生物的营养类型 第四节 微生物对营养物质的吸收 第五节 微生物的培养基. 第一节 微生物细胞的化学组成. 元素与高等生物相同,包括 C、H、O、N 和矿质元素,主要组成元素为 C、H、O、N ,约占干重 90 ~ 97% , C、H 占干重50%及7%。 N 量变化较大,单细胞微生物的含氮量高于丝状真菌, C/N 小于丝状真菌。矿质元素约占干重3~10%。 存在形式:水、无机物、有机物。 有机物:3类,结构物质、贮藏物质、代谢底物和产物。. - PowerPoint PPT Presentation

Citation preview

Page 1: 第四章  微生物细胞的          化学组成与营养

第四章 微生物细胞的 化学组成与营养 第一节 微生物细胞的化学组成 第二节 微生物的营养需要 第三节 微生物的营养类型 第四节 微生物对营养物质的吸收 第五节 微生物的培养基

Page 2: 第四章  微生物细胞的          化学组成与营养

第一节 微生物细胞的化学组成 元素与高等生物相同,包括 C 、 H 、 O 、 N 和矿

质元素,主要组成元素为 C 、 H 、 O 、 N ,约占干重 90 ~ 97% , C 、 H 占干重 50% 及7% 。 N 量变化较大,单细胞微生物的含氮量高于丝状真菌, C/N 小于丝状真菌。矿质元素约占干重 3 ~ 10% 。

存在形式:水、无机物、有机物。 有机物: 3 类,结构物质、贮藏物质、代谢底物

和产物。

Page 3: 第四章  微生物细胞的          化学组成与营养

第一节 微生物细胞的化学组成 微生物细胞的化学组成随微生物种类、培养

条件和生长阶段不同而有明显差异。在特殊生态环境中生活的一些微生物,常在细胞内富集某些特殊元素。

Page 4: 第四章  微生物细胞的          化学组成与营养

第一节 微生物细胞的化学组成 一、水分: 二、蛋白质、肽和氨基酸: 三、核酸与核苷酸 : 四、类脂: 五、碳水化合物: 六、维生素: 七、其它有机物质: 八、无机物质(矿物质)

Page 5: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 营养要素:水、碳源、氮源、能源、生

长因子和无机盐。 异养型微生物与动物的营养要素基本吻

合;自养型微生物与绿色植物的营养要素一致。

Page 6: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 一、水: 二、碳源:凡能提供微生物营养所需碳元素 ( 碳

架 ) 的营养物质称为碳源。分无机碳源和有机碳源。自养型以 CO2 为唯一碳源。化能异养型以有机碳为碳源。常用碳源物质:糖类 ( 单、寡、多糖 ) 、有机酸、醇、脂类、烃类及芳香族化合物等。异养型碳源同时提供碳素和能量,并且,生长在动物血液、组织和肠道中的有益或致病微生物,还需少量 CO2 ( 10% )才能正常生长。

Page 7: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 三、氮源:凡能提供微生物生长繁殖所需氮素的

营养物质,称为氮源。一是固氮微生物,能以空气中的分子态氮 (N2) 为唯一氮源,通过固氮酶系统将其还原成 NH3 ,进一步合成所需的各种有机氮化物。二是氨基酸自养型,能以无机氮 ( 铵盐、硝酸盐和尿素等 ) 为唯一氮源, 合成氨基酸,进而转化为蛋白质及其它含氮有机物。三是氨基酸异养型,不能合成某些必需的氨基酸,必须从外源提供这些氨基酸才能生长。

Page 8: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 四、能源:为微生物生命活动提供最初

能量来源的营养物质和辐射能称为能源。化能自养能源都是还原态无机物质,大多具有双重以上功能,如 AA 具有氮源、碳源和能源 3 种功能 。

Page 9: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 五、矿质养分:特殊之处是化能自养菌能源

(S 、 Fe2* 等)。 Fe 细菌 -- 铁氧化得到能量, S细菌以硫化物作能源。 1977 。 2 月美国东太平洋加拉帕戈斯群岛东部,深达 1 万米的海底温泉,发现了一个不依赖太阳能的独立生态系统,生产者是硫细菌, 100 万— 100亿 /毫升,以逸出的硫化氢作能源,以二氧化碳作碳源,厌氧条件下,自养生活,耐高温高压,硫细菌的菌体供给蠕虫、蛤、贝、蟹等无脊椎动物。

Page 10: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 1 、磷 2 、硫 – 3 、镁 – 4 、钾和钠 – 5 、钙 6 、铁 7 、微量元素:自来水和其它营养物质中以杂

质形态存在的微量元素数量已能满足微生物生长需要,过量加入会造成毒害。

Page 11: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 六、生长因子:生长必需的微量有机物

质, V 、 AA 和碱基 (嘧啶和嘌呤 ) 。不提供能量,不参与细胞组成,大多为酶组分。

野生型或原养型:能自身合成各种生长素,不需外界供给,在基础培养基上生长的菌株。多数真菌、放线菌和部分细菌属于这种类型。

生长因子异养型:自身缺乏合成一种或多种生长素的能力,需外源提供所需生长素才能生长。通常将由于自发或诱发突变等原因从野生型菌株

Page 12: 第四章  微生物细胞的          化学组成与营养

第二节 微生物的营养需要 产生的需要特定生长素才能生长的菌株

称为营养缺陷型菌。乳酸菌、各种动物病原菌和支原体等属于生长因子异养型微生物。

生长因子过量合成型:在代谢活动中向细胞外分泌大量维生素等生长因子,可用于生产。如阿舒假囊酵母的维生素 B2产量可达 2.5g/L 发酵液。

Page 13: 第四章  微生物细胞的          化学组成与营养

第三节 微生物的营养类型 -依据能源、碳源、氢或电子供体不同分为 4种

营养类型:光能无机营养型、光能有机营养型,化能无机营养型和化能有机营养型。

依倨碳源分为自养型和异养型两类。自养型能在完全无机的环境中繁殖、生长,具有完备的酶系,能利用 CO2 或以碳酸盐为碳源,以氨或硝酸盐为氮源,合成细胞有机物质。异养型合成能力较差,需要较为复杂的有机化合物才能生长,主要以有机碳化合物为碳源,氮源为有机或无机物。

Page 14: 第四章  微生物细胞的          化学组成与营养

一 、光能无机(自养)营养型: 具有光合色素、能利用光能并以水或还原态

无机物为供氢体,同化 CO2 。藻类、蓝细菌和光合细菌属于这种类型。光合色素主要有叶绿素 ( 或菌绿素 ) 、类胡萝卜素和藻胆素 3大类,其中叶绿素或菌绿素为主要的光合色素,类胡萝卜素和藻胆素的主要功能为捕获光能并在强光照射时保护叶绿素。光能自养型微生物的光合作用分为产氧光合作用和不产氧光合作用两种类型。

Page 15: 第四章  微生物细胞的          化学组成与营养

一 、光能无机(自养)营养型:

(一)、产氧光合作用:藻类和蓝细菌 光能 CO2+ H2O ---------- [ CH2O ] + O2↑

叶绿素 (二)、不产氧光合作用:光合细菌 (紫色细菌

和绿色细菌 ) 光能

CO2 + 2H2S ----------- [CH2O]+ H2O+2S 叶绿素

Page 16: 第四章  微生物细胞的          化学组成与营养

紫色细菌

Page 17: 第四章  微生物细胞的          化学组成与营养

绿色细菌

Page 18: 第四章  微生物细胞的          化学组成与营养

二、光能有机营养型: 能利用光能、以简单有机物 ( 有机酸、醇

等 ) 为供氢体同化 CO2 ,称为光能有机营养型。

以异丙醇为供氢体时,其反应式为: 2 ( CH3 ) 2-CH-OH+CO2 (光、光合

色素、嫌气)→ 2 ( CH3 ) 2-C=O+CH2O+H2O

Page 19: 第四章  微生物细胞的          化学组成与营养

三、化能无机(自养)营养型:

通过氧化无机物获得能量并以 CO2 为主要或唯一碳源。由于受无机物氧化产生能量不足的制约,这类微生物一般生长迟缓,某些类群 ( 如硝化细菌 )甚至只能在严格的无机环境中生长,有机物 (甚至琼脂 )的存在对其生长有毒害作用。

Page 20: 第四章  微生物细胞的          化学组成与营养

四、化能有机(异养)营养型:

以有机物为碳源、能源和供氢体。种类最多,作用最强。已知的绝大多数细菌、放线菌、全部真菌和原生动物均属于此类型。化能异养菌的具体营养要求随种类而异。

Page 21: 第四章  微生物细胞的          化学组成与营养

四、化能有机(异养)营养型:

(一)、细菌:能利用全部天然有机物和多种人工合成有机物。单、双糖、醇和有机酸等易利用;淀粉和糊精次之;纤维素、果胶、木质素和几丁质等复杂天然有机物仅能被少数类群利用。铵盐、硝酸盐、氨基酸、肽、蛋白胨及蛋白质能被大多数细菌利用,少数类群能利用空气中氮气。多数细菌能合成它们需要的全部生长素类物质,少数类群需要供给一种或多种生长素类物质才能正常生长。牛肉膏蛋白胨培养基和葡萄糖酵母汁培养基是常用的细菌培养基,能满足大多数异养型细菌生长的营养需要。

Page 22: 第四章  微生物细胞的          化学组成与营养

四、化能有机(异养)营养型:

(二)、放线菌:化能有机营养型生长因子自养型,无生长素合成培养基上生长良好。

(三)、真菌:化能有机营养型。葡萄糖、果糖、蔗糖、麦芽糖、甘露醇、淀粉及糊精是多数真菌的合适碳源;有些种类能利用纤维素、果胶、半纤维素、几丁质和木质素等高分子有机物 。胨、肽、氨基酸和铵盐为真菌的最适氮源,硝酸盐和尿素次之。真菌一般不需要外源生长素,有些类群还能合成大量的 B族维生素而被用于制造酵母膏或酵母粉。

Page 23: 第四章  微生物细胞的          化学组成与营养

第三节 微生物的营养类型 微生物的 4种营养类型的划分不是绝对

的,实际上存在许多中间过渡和兼性类型。如红螺菌 、铁细菌和氢细菌等具有复杂的营养特点,它们在某一特定环境下表现为特定的营养型,而在另一种特定环境条件下则表现为另一种营养类型。

Page 24: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 吞噬和渗透吸收两种类型。 原生动物对固体颗粒状食物的捕食称为吞噬,对液体或胶体状小液滴状食物的捕食称为胞饮。

绝大多数微生物通过细胞质膜以渗透方式吸收营养物质。细菌、放线菌、蓝细菌、藻类、真菌、原生动物中的孢子虫和鞭毛虫等。

Page 25: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 细胞壁:屏障之一。普通细胞壁的网状结

构允许分子量低于 800 道尔顿的小分子物质自由出入,但能阻挡高分子物质进入。复杂的高分子化合物如多糖 、蛋白质、纤维素和果胶等在进入细胞之前必须先经过胞外酶的初步分解后才能进入 。胞外酶多为适应性 (诱导 ) 酶。常见的胞外酶主要有:淀粉酶、纤维素酶、果胶酶、几丁质酶、蛋白酶、核酸酶与脂酶等。 -

Page 26: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 细胞质膜:磷脂双分子层和嵌合蛋白分

子组成半透膜,控制营养物质进入和代谢产物排泄的主要屏障,具有选择性吸收功能,内外物质交换的主要界面。营养物质通过质膜的方式有 4种:单纯扩散、促进扩散、主动运输和基团转移,其中主动运输最为重要。

Page 27: 第四章  微生物细胞的          化学组成与营养

1.

单纯扩散;2.

促进扩散

3.基团移位;4.

主动运输

Page 28: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 一、单纯扩散、被动扩散:质膜内外营养浓度

差而产生的物理扩散作用。非特异性,速度取决于营养物的浓度差、分子大小、溶解性、极性、 pH 、离子强度和温度等因素。扩散将使内外浓度差不断减小,直至相等达到动态平衡。不需膜上载体蛋白,不消耗能量,因此不能逆浓度梯度运输养分,速度、种类有限。主要有水、溶于水的气和小的极性分子 ( 如尿素、甘油、乙醇等 ) 。

Page 29: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 二、促进扩散:营养通过与质膜透过酶或载体蛋

白的可逆性结合从高浓度环境进入低浓度环境的传递过程,只对高养料浓度有意义。透过酶加快运输速度,多为诱导酶 。动力是质膜内外浓度差,不消耗能量,同样也不改变最终达到膜内外浓度相等的动态平衡。

3个特点:①特异性,即一定的透过酶只能与一定的养料离子或结构相近的分子结合;②能提高运输速度,提前达到动态平衡;③当膜外养料浓度过高时,透过酶数量有限表现饱和效应。

Page 30: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 三、主动运输:在代谢能推动下,通过质膜上特

殊载体蛋白逆浓度梯度吸收营养物质的过程。 特点:①特异性,即养料与载体蛋白间存在着专

一对应的关系;②消耗能量;③逆浓度梯度运输;④能改变养料运输反应的平衡点。主动运输是微生物在自然界稀薄的营养环境中获得营养物,正常生存的重要原因之一。无机离子、有机离子和一些糖类 (乳糖、蜜二糖及葡萄糖 ) 通过主动运输进入细胞。

Page 31: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 四、基团转移:需要特异性载体蛋白和消耗能量,运输前后养分分子结构发生改变。基团转移主要用于葡萄糖、果糖、甘露糖、核苷酸、丁酸和嘌呤等物质。目前仅在原核生物中发现该过程。基团转移运输是通过磷酸转移酶系统(PTS ,即磷酸烯醇式丙酮酸—已糖磷酸转移酶系统 )完成的。

Page 32: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 以葡萄糖为例: 1.热稳定载体蛋白 (HPr)激活 细胞内高能化合物磷酸烯醇式丙酮酸 (PEP)

的磷酸基团把 HPr激活: 酶Ⅰ --

HPr+PEP=====P-HPr+丙酮酸 HPr 是一种热稳定的低分子量可溶蛋白,结

合在细胞质膜上,具有高能磷酸载体的作用。酶Ⅰ是一种可溶性蛋白,分布于细胞质内。

Page 33: 第四章  微生物细胞的          化学组成与营养

第四节 微生物对营养物质的吸收 2.糖被磷酸化后进入质膜内 膜外环境中的糖先与外膜表面的酶Ⅱ结合,再转运至内膜表面。这时,糖被 P—HPr 上的磷酸激活,通过酶Ⅱ作用将糖—磷酸释放到细胞内。

酶Ⅱ糖 ( 细胞外 ) + P-HPr====== 糖 -P( 细胞内 ) + HPr 酶Ⅱ是结合于膜上的蛋白,对底物有特异性选择作用。膜上可诱导出一系列与底物分子相适应

酶Ⅱ。

Page 34: 第四章  微生物细胞的          化学组成与营养

第五节 微生物的培养基

人工配制的适合微生物生长繁殖或积累代谢产物的营养基质。

培养基含有微生物所需的 6大营养要素( 水分、碳源、氮源、能源、矿质元素、生长素 ) 和适宜的 pH值、渗透压及氧化还原电位等。

Page 35: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (一)、按成分区分 (二)、按用途区分 (三)、按物理状态区分

Page 36: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (一)、按培养基成分区分: 1 、合成培养基 - 2 、天然培养基 3、半合成培养基

Page 37: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (一)、按成分区分: 1 、合成培养基:用化学试剂配制的营养基质。 化学成分和含量完全清楚且固定不变,重现性强,适用于进行营养、代谢、生理生化、遗传育种及菌种鉴定等精细研究。

一般微生物在合成培养基上生长缓慢,许多营养要求复杂的异养型微生物在合成培养基上不能生长。

Page 38: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 斯塔克 (Starkey) (氧化硫杆菌): 硫磺粉 10g CaCl2 0.25g

(NH4)2SO4 0.2g

KH2PO4 3.0g -

MgSO4·7H2O 0.5g

Fe2(SO4)33·9H2O 0.01g 蒸馏水 1000ml -pH2.0 ~ 3.5

Page 39: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 2 、天然培养基 --用各种动植物和微生物材料制

作的成分含量不完全清楚且变化不定的营养基质。 取材广泛,营养丰富,经济简便,微生物生长迅速,适合各种异养微生物生长。

成分不完全清楚,含量不确定,用于精细实验时重复性差。仅适用于实验室的一般粗放性实验和工业生产中制作种子和发酵培养基。

Page 40: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 配制天然培养基的原料主要有牛肉膏、酵母膏、米曲汁、麦芽汁、蛋白胨、马铃薯、玉米粉 、麸皮及花生饼粉等。牛肉膏提供碳水化合物、有机氮化合物、水溶性维生素和一些碳水化 合物。酵母膏提供大量 B族维生素和有机氮及碳水化合物。

Page 41: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 3、半合成培养基 --用天然有机物提供碳、

氮源和生长素,用化学试剂补充无机盐配制的营养基质。

能充分满足微生物的营养要求,大多数微生物能在此类培养基上良好生长。

Page 42: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (二)、按用途区分: 1 、基础培养基 2 、加富培养基 3、选择培养基 4、鉴别培养基 5、活体培养基

Page 43: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (二)、按用途区分: 1 、基础培养基:按照营养要求相似微生物的共同营

养要求配制的,使用前加入少数几种特殊成分就能满足某一具体微生物生长需要的营养基质。

细菌营养缺陷型菌株基础培养基(无生长素): K2HPO3 30g ---KH2PO4 10g --NH4NO3 10mg

Na2SO4 1g ------ MgSO4·7H2O 10mg –MnSO4·4H2O 10mg FeSO4·7H2O 10mg -----CaCl 25mg ---H2O1000mg

Page 44: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 配好后置冰箱中备用。使用时,把基础

培养基稀释 10倍,加入 1%葡萄糖,然后依据该菌的营养缺陷型加入一定量( 如 50mg/L) 所缺陷的生长素,调pH ,杀菌使用。这类培养基主要用于微生物的代谢和育种研究。

Page 45: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 2 、富集、增殖、加富培养基:根据待分离微生物的特殊营养要求配制的适合该类微生物快速生长而不利于其它微生物生长的营养基质。

一般是在普通培养基中加入特殊的营养物质,使某种微生物能在其中生长得比其它微生物更快,以逐渐淘汰掉其它微生物。常用于菌种筛选工作。

Page 46: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 纤维素酶生产菌增殖培养基: K2HPO4 2g --(NH4)2SO4 1.4g -CaCl2 0.3g -

MgSO4·7H2O 0.3g FeSO4·7H2O 5mg ---- -MnSO4 1.6mg --ZnCl2 1.7mg --琼脂 20g 纤维素粉 20g 水 1000ml -pH 5.0 纤维素粉为唯一碳源,不能用纤维素作碳源的微生

物就不能在其上生长。也可以去掉纤维素粉和琼脂,将一滤纸条一端浸入营养液。

分离出来的微生物不是纯种,而是营养要求相同的微生物类群。

Page 47: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 利用富集培养基时,必须同时考虑营养成分和培

养环境两个因素。 样品中数量很少时,难于采用平板划线等方法,

加入某种物质,使分离对象迅速增殖,在数量上超过原来占优势的微生物,达到富集或增殖培养的目的。

加入富集培养基的特殊营养物主要是一些特殊的碳源和氮源。如纤维素用于富集产纤维素酶的微生物,石蜡油用来富集分解石油的微生物,以及用较浓的糖液富集酵母菌等。 。

Page 48: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 3、 - 选择培养基 -- 利用分离对象对某些化学物质

的抗性或生理特长设计的能抑制或限制其它微生物生长而使分离对象正常生长的营养基质。

含有抑菌剂或杀菌剂,所加入的抑菌、杀菌剂无营养功能,多为染色剂、抗生素等。如培养基中含有 200mg ~ 500mg/L 结晶紫,能抑制大多数革兰氏阳性细菌生长;在培养基中加入一定量氯霉素对酵母菌生长无影响,但能抑制细菌生长。

温度、 pH 、氧化还原电位和渗透压也可用于某些微生物的选择培养。

Page 49: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 4、鉴别培养基 -- 利用微生物代谢产物与指示剂

的显色反应快速鉴别不同微生物的营养基质。 含有能与某一无色代谢产物发生显色反应的指示剂,使待鉴别微生物菌落产生特定的颜色,以便与外形相似的其它菌落区分开。

伊红美兰鉴别(大肠杆菌)培养基:蛋白胨10g ;乳糖 10g ; K2HPO42g ; 20%伊红水溶液 20ml ; 0.33% 美蓝水溶 液 20mL ;琼脂25g ;水 1000ml

Page 50: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 伊红美蓝两种苯胺染料可抑制革兰氏阳性细菌生长。伊红为酸性染料,美蓝为碱性染料,试样中的多种肠道细菌在伊红美蓝培养基上形成能相互区分的菌落,其中大肠杆菌能强烈发酵乳糖产生大量混合酸,菌体带 H+ ,可与酸性染料伊红结合,美蓝再与伊红结合形成紫黑色化合物,使菌落在透射光下呈紫色,反射光下呈绿色金属光泽。产酸力弱的沙雷氏等属细菌菌落为棕色;不发酵乳糖不产酸的沙门氏等属细菌呈无色透明菌落。

Page 51: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 活体培养基:病毒、立克次氏体等专性寄

生微生物不能在一般培养基上生长,常用鸡胚、活细胞和动物培养。采用鸡胚培养时,将微生物接到绒毛尿囊膜、尿囊、羊膜囊和卵黄囊中进行培养,即可得培养物。细胞培养指将病毒接种到体外培养的活细胞上使其增殖。

Page 52: 第四章  微生物细胞的          化学组成与营养
Page 53: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (三)、按物理状态区分: 1 、固体培养基 2 、液体培养基 3 、半固体培养基

Page 54: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 (三)、按物理状态区分: 1 、固体培养基:①凝固培养基 --琼脂或明胶遇热融化冷却凝固。用量为 1.5% ~ 2.0% 和 5% ~ 12% 。常用琼脂;②非可逆性凝固培养基 --由血液或无机硅胶凝固。无机硅胶平板专用于化能自养微生物分离纯化;③天然固体培养基 --由天然固态物质直接制成。如麸皮、米糠等;④滤膜 -- 一种坚韧且带有无数微孔的醋酸纤维薄膜。将其制成圆片浸在含培养液的纤维素衬垫上,就形成了具有固体培养基性质的营养滤膜。

Page 55: 第四章  微生物细胞的          化学组成与营养

一、培养基的类型 2 、液体培养基:无凝固剂呈液体状态的

培养基质。多用于实验室生理代谢研究及工业发酵。

3 、半固体培养基:凝固剂含量较低,静止时呈固态,剧烈振荡后呈流体态的营养基质。琼脂加入量约为 0.5% 。常用于细菌运动性观察及微生物的趋化性研究等。

Page 56: 第四章  微生物细胞的          化学组成与营养

二、培养基选择(一)、营养特点:自养型不含有机物,异养型以

有机碳化物为碳源和能源。细菌牛,放线菌高氏(淀粉硝酸钾)、霉菌察氏(蔗糖硝酸钠)等。

(二)、培养基特点:液体,分散、接触充分,生长快,积累代谢产物多。工业深层发酵生产抗生素等,效率高,操作方便,便于机械化和自动化。琼脂固体,分离纯化、观察鉴定、保藏等。天然固体,营养丰富,疏松透气,比表面大,培养孢子、制备粗酶制剂,设备简单、投资少,上马快及易推广等。合成培养基成分清楚,含量精确,用于精细实验,营养因子不够丰富,生长较差,甚至不能生长。

Page 57: 第四章  微生物细胞的          化学组成与营养

三、培养基设计: (一)、目的明确:培养菌、产物、生产研究? (二)、营养协调:菌体化学组成大致确定营养比例。异养微生物中,碳源兼能源,每同化 1份碳,约需 4份碳作能源。多数化能异养菌,要素: H2O> C源 ( 含能源 ) > N源> P 、 S > K 、 Mg>生长素,含量:~ 10-1 ~ 10-2 ~ 10-3 ~ 10-4 ~10-5 ~ 10-6, C/N 最为重要:培养基中 C 、 N 原子的摩尔数之比。细菌酵母菌约为 5 : 1 ,霉菌适于富含淀粉;碳源不足,易早衰;氮源过量,菌体生长过旺,代谢产物积累少;氮源不足,菌体生长过慢。

Page 58: 第四章  微生物细胞的          化学组成与营养

三、培养基设计: 种子培养基和发酵培养基 C/N 不同。前者 C/N 小,

以增加菌数;后者以代谢产物为目的,有机酸、醇类时, C/N 较大,以限制菌数,促进产物累积;氨基酸类, C/N 较小,保证含氮产物积累。如谷氨酸发酵时,氮不足,则累积α一酮戊二酸;氮过量 ,又形成谷酰胺。

矿质元素比例适当,防止单盐毒害。微量元素除特别需要外,一般不另外供给。生长素需要极微。如细菌生物素为 10μg/L ,氨基酸为 5~ 50mg/L 。

Page 59: 第四章  微生物细胞的          化学组成与营养

三、培养基设计: (三)、加入特殊物质:纤维素酶(纤维素)淀粉酶(淀粉)和果胶酶(山楂)属于诱导酶,筛选及生产,必须选择碳源,不能用葡萄糖作碳源。

发酵次生代谢产物,需加入特殊元素和特定前体物质,如 VB12 加钴元素,苄青霉素加苯乙酸等。

-用自来水配制培养基或培养基中自身含磷酸盐上述成分时,应加入少量螯合剂 (0.01%EDTA) ,以防止与钙、镁、铁等阳离子形成不溶性沉淀。

Page 60: 第四章  微生物细胞的          化学组成与营养

三、培养基设计: (四)、选择适宜原料: 发酵原料大都为粮食、油脂及蛋白质等。价廉物美,来源丰富,运输方便,无毒性。

1 、选用粗原料 ; 2 、选用工农业副产品; 3、选用无机氮源; 4、选用低浓度;

Page 61: 第四章  微生物细胞的          化学组成与营养

四、培养条件控制: (一)、 pH控制:霉菌和酵母偏酸性, 4.5~ 6.0 ,细菌和放线菌喜中性或微碱性,7.0 ~ 7.5,生长能引起 pH改变,抑制或杀死自身。分解碳水化合物产酸,分解蛋白质和氨基酸产氨。内源调节法 --预先向培养基中加入调节物质如磷酸缓冲液( 6.0

~ 6.8 ~ 7.6 )、 CaCO3 (溶解度很低,耗酸);外源调节法 --在培养过程中不断流加酸碱及牛肉膏、蛋白胨及氨基酸等

Page 62: 第四章  微生物细胞的          化学组成与营养

四、培养条件控制: (二)、渗透压:等渗适宜生长;为提

高发酵产量,以不超过最适渗透压为前提,趋向于采用较高浓度。在特殊培养( 如耐盐微生物 ) 中,需加入适量NaCl ,提高渗透压。

Page 63: 第四章  微生物细胞的          化学组成与营养

四、培养条件控制: (三)、 Eh :供氧水平指标。好氧生长为 +0.3~ +0.4V ,> 0.1V 能生长;兼性厌氧> 0.1V好氧呼吸,< 0.1V 发酵;厌氧生长为< 0.1V 。 Eh 对好氧和兼性厌氧的影响不大,对专性厌氧十分重要,严格厌氧技术、加入还原剂。常用巯基乙酸 (0.01% ) 、抗坏血酸 (0.1%) 、硫化钠 (0.025%) 、半胱氨酸 (< 0.05% )、葡萄糖 (0.1% ~1.0%) 、铁屑( < -0.40V ) 、 谷胱甘肽、氧化高铁血红素、二硫苏糖醇或庖肉 ( 小块瘦牛肉 ) 。

Page 64: 第四章  微生物细胞的          化学组成与营养

四、培养条件控制: Eh可用电极电位和氧化还原指示剂刃天青等测定。

刃天青加入量为 1mg/L 。无氧时呈无色,约为 -40mV ;有氧时的颜色与溶液 pH 有关 ( 中性紫色,碱性蓝色,酸性红色 ) ;微氧时呈粉红色。

Page 65: 第四章  微生物细胞的          化学组成与营养

复习思考题 1.微生物细胞由哪些物质组成的 ?各自含量多少 ? 2.微生物生长所需的营养要素包括哪些成分 ?各种成

分有何生理功能 ?在培养基中的含量约为多少 ? 3.微生物营养类型有几种 ?各自的分类依据是什么? 4. 简述光能自养、光能异养、化能自养及化能异养微

生物的营养特点。 5.微生物吸收营养物质的方式有哪几种 ?简述基团转移过程。

Page 66: 第四章  微生物细胞的          化学组成与营养

复习思考题 6.什么叫培养基 ?培养基分为哪几种类型 ?各种

培养基在设计时应重点考虑哪些因素 ? 7. 选择性培养基为什么要加入不同的抑制剂 ?常

用抑制剂可分为哪几种类型 ?作用原理是什么 ? 8. 琼脂与明胶各有何性质 ?作为固态培养基的凝

固剂时各有何优缺点 ? 9. 选择培养基类型时应考虑哪些问题 ? 10.确定培养基的成分与含量时应注意哪些问题 ?