17.WM-RC Landfill Leachate

Embed Size (px)

Citation preview

  • 8/19/2019 17.WM-RC Landfill Leachate

    1/33

    UniPD17.1

    MSc “Environmental Engineering” - Waste Management Course

    17. LandfillLandfill

    leachateleachate

    managementmanagement

  • 8/19/2019 17.WM-RC Landfill Leachate

    2/33

    UniPD17.2

    Leachate is a wastewater produced by the infiltration of water in the

    landfill.

    The water percolating through the waste removes organic compounds,

    metals and salts.

    The QUALT! of the leachate depends by the "uality and type of the

    waste #$%&, ndustrial waste, bottom ashes', it depends by the

    conditions of the degradation of waste in the landfill #anaerobiccondition, aerobic conditions, semi(aerobic condtions' and finally it

    depends by the age of the landfill #new landfill or old landfill'.

    The QUA)TT! of leachate depends by*

    + haracteristics of the site

    + limatic - meteorological conditions of the site

    + Physical characteristics of the waste

    + haracteristics of the barrier systems

    What is leachate?What is leachate?

  • 8/19/2019 17.WM-RC Landfill Leachate

    3/33

    UniPD17.3

    ydrological balance of a landfill / &ater 0udget of a landfill

    LcLi

    L   ∆Ubio

    ∆Uw%

    1

    232

    P 4T / 4

    Pe

    ∆Us

    Pi

    %urface

    water 

    1roundwater

    source

  • 8/19/2019 17.WM-RC Landfill Leachate

    4/33

    UniPD17.4

    % * infiltration from the surface water sources

    23 * 2un off from surroundings to the landfill

    2 * 2un off from the landfill to surroundings

    P * Precipitation /rainfall

    4T * 4vaporation - Transpiration

    Pe * Precititation entered in the landfill body

    Pi * Precipitation nfiltrated in the top cover 

    ydrological balance of a landfill / &ater 0udget of a landfill

    %ymbols

    4 * 4vaporation #only'

    1 * infiltration from the groundwater sources

  • 8/19/2019 17.WM-RC Landfill Leachate

    5/33

    UniPD17.5

    L * Total produced leachate

    Li * Uncontrolled infiltrated leachate

    ∆Us* $oisture variation of top cover 

    Lc * ollected leachate

    ∆Ubio * &ater consumpion or production by

    biological activity

    ∆Uw * $oisture variation of waste

    ydrological balance of a landfill / &ater 0udget of a landfill

    %ymbols

  • 8/19/2019 17.WM-RC Landfill Leachate

    6/33

    UniPD17.6

    % * infiltration from the surface water sources

    23 * 2un off from surroundings to the landfill

    2 * 2un off from the landfill to surroundings

    P * Precipitation / rainfall

    4T * 4vaporation - Transpiration

    Pe * Precititation entered in the landfill body

    Pi * Precipitation nfiltrated in the top cover 

    ydrological balance of a landfill / &ater 0udget of a landfill

    %ymbols

    4 * 4vaporation #only'

    1 * infiltration from the groundwater sources

    Uncontrollable

    ontrollable

     Avoidable

    ontrollable/Uncontrollable

     Avoidable

  • 8/19/2019 17.WM-RC Landfill Leachate

    7/33UniPD

    17.7

    L * Total leachate produced

    Li * Uncontrolled leachate escape

     5Us* $oisture variation of top cover 

    Lr  *Leachate recovered

     5Ubio * &ater consumpion or production due to biological activity

     5Uw * $oisture variation of waste

    ydrological balance of a landfill / &ater 0udget of a landfill

    %ymbols

     Avoidable

    Uncontrollable/

    ontrollable

    6

    %hould be e"ual

  • 8/19/2019 17.WM-RC Landfill Leachate

    8/33UniPD

    17.

    ydrological balance of a landfill / &ater 0udget of a landfill

    Lr Li

    L   ∆Ubio

    ∆Uw%

    1

    232

    P 4T / 4

    Pe

    ∆Us

    Pi

    %urface

    water

    source

    1roundwater

    source

    !

    !

    !!

  • 8/19/2019 17.WM-RC Landfill Leachate

    9/33

    UniPD17.!

    ydrological balance of a landfill / &ater 0udget of a landfill

    Lr 

    L   ∆Ubio

    ∆Uw

    2

    P 4T / 4

    Pe

    ∆Us

    Pi

  • 8/19/2019 17.WM-RC Landfill Leachate

    10/33

    UniPD17.1"

    L 7 Pi 8 % 8 1 9 ∆Us 9 ∆Uw 9 ∆Ubio

    Pi 7 P 8 23 ( 2 : 4T

    Lr  7 L : Li

    onsidering that some terms are e"ual to

    ;ero the e"uation becomes the following*

    Lr  7 L 7 P ( 2 : 4T 9 ∆Us 9 ∆Uw 9 ∆Ubio

    ydrological balance of a landfill / &ater 0udget of a landfill

    4"uations

  • 8/19/2019 17.WM-RC Landfill Leachate

    11/33

    UniPD17.11

    #reci$itation % &ain'all * should be evaluated by

    pluviometers as much close as possible to the site of thelandfill

    Sur'ace runo''  * can be calculated using the followingformula

    2 7 . P2 7 surface runoff #mm/d'

    7 runoff coefficient

    P 7 rainfall #mm/d'

    7 a.bi

    a : depends on the presence of the final cover, on the

  • 8/19/2019 17.WM-RC Landfill Leachate

    12/33

    UniPD17.12

    4mpirical values of =bi> for taly

    4mpirical values for =a>

    2U)?@@ ?4@@4)T 7 a.bi

  • 8/19/2019 17.WM-RC Landfill Leachate

    13/33

    UniPD17.13

    4vaporation - 4vaporation and Transpiration #4 / 4T'

    4vaporation 7 no plants or grass on the top cover 

    4vaporation - Transpiration 7 plants and grass on the top

    cover 

    Potential 4T #P4i'* $aimal 4T from surface covered with a

    homogeneous,green crop with optimal water supply

    1overning factors*

     : $eteorological factors* &ind, Temperature, 2elativehumidity

     : %oil and plant factors* Type/state of crop, %oil type

  • 8/19/2019 17.WM-RC Landfill Leachate

    14/33

    UniPD17.14

    Potential 4vapotranspiration

    PE 16(

    10T

    I ) Cii

     T

    a

    i= ⋅

    P4i 7 potential evapotranspiration of the i(month #mm/month'

    Ti  7 monthly average temperature #B' 

    1,51412

    i01

    i T )

    5

    T(I   ∑= 7 annual thermal inde

    a = 6,75 10-7 IT3  - 7,71 10-5  IT

    2 + 1,7 10-2 IT + 0,423

    i 7 depends on hours of sunlight and on latitude

    Thorntwaite @ormula*

  • 8/19/2019 17.WM-RC Landfill Leachate

    15/33

    UniPD17.15

    i values depending on month #sunlight' and on latitude

  • 8/19/2019 17.WM-RC Landfill Leachate

    16/33

    UniPD17.16

    ow to manage the Potential 4vapotranspiration values

    During the =wet> season where P : 2 C P4, 4T 7 P4 can be

    assumed

    During the =dry> season where P : 2 P4, it is more difficult

    to evaluate the value of the 4T.

     A suggestion can be the following*

    4T 7 P4 . U / @

    U * actual moisture content of the ground

    @ * field capacity

    4ven in this case an evaluation or an estimation of the U - @

    values should be done.

  • 8/19/2019 17.WM-RC Landfill Leachate

    17/33

    UniPD 17.17

    4vaporation

    Turc @ormula*

     L

    a P 

    a P  E 

    ++

    +=

    1

    4 7 evaporation in EF days #mm/EF days' GGG

    P 7 average precipitation in EF days #mm/EFdays' GGG 

    a 7 amount of water that can evaporate in EF days withoutprecipitation 7 EF : F.FE3tF.H 

    t 7 time since the last precipitation #in seconds'

    L 7 heliothermic factor  

  • 8/19/2019 17.WM-RC Landfill Leachate

    18/33

    UniPD 17.1

    eliothermic factor 

     g  I T  L )2(

    16

    1+=

    T  7 average temperature #B'

     I  g  7 F#F.EI 8 F.JK n/)' solar radiation

    F 7 theoretica maimum solar radiation #cal/cmK/d' #see page KF'

    ) 7 theoretical maimum hours of incoming solar radiation #seepage KE'

    n 7 effective hours of incoming solar radiation

  • 8/19/2019 17.WM-RC Landfill Leachate

    19/33

    UniPD 17.1!

    F  theoretical maimum solar radiation #cal/cmK/d'

    values depending on month and on latitude

    ) th ti l i h f i i l di ti

  • 8/19/2019 17.WM-RC Landfill Leachate

    20/33

    UniPD 17.2"

    ) theoretical maimum hours of incoming solar radiation

    depending on month and on latitude

  • 8/19/2019 17.WM-RC Landfill Leachate

    21/33

    UniPD 17.21

    nfiltration

    nfiltration through a low permeability layer* Darcy law

    Q 7 3%3i MmN/sO

    * Permeability of the layer #m/s'% * Area of the layer #mK'

    * ydraulic gradient #m/m'

    Q * @low rate of water 

    &ater can permeate #infiltrate' though a porous medium only

    after reaching saturation #@4LD APAT!, @'

    @ definition* The volume of water which is the maximum that

    a soil can hold in its pores after excess water has been drained

    away; the state of a soil in this condition, when the only water

    that remains is water retained by the soil particles through

    surface tension.

  • 8/19/2019 17.WM-RC Landfill Leachate

    22/33

    UniPD 17.22

    nfiltration

    igh permeable soils or waste can be manage at the same

    way to model the infiltration.

    t can be considered that due to hydraulic short circuits

    through the medium, the percolation of water can appear after

    the saturation of HF of the @.

    W  FC +

    −=

    453555.06.0

    @ * @ield apacity # of dry matter'

    & * &eight of E mN of waste at the average depth of thelandfill #g'

     As example: MS with a density of !."# t$m%, with a moisture

    content of %#&, has a '( of "!&

  • 8/19/2019 17.WM-RC Landfill Leachate

    23/33

    UniPD 17.23

     Assignment

    1iven the data below and the information available in the previous slides,

    calculate the leachate production of a landfill for untreated municipal

    solid waste. 

    The following informations are available*

    E' )o top cover during operation of the landfill

    K' Temporary top cover realised by sandy material until the EHB year after

    closure with a slope of H(EFN' @inal top cover realised by clayey material since EHB year after closure

    with a slope of H

    ' EF meters of depth of the landfill

    H' Population served* E.FFF.FFF people

    J' The landfill is composed by NF sectors, each sector is completed in onesemester.

     Any other re"uired data should be reasonable assumed

    (he use o' E)cel is recommen*e* 'or calculations

  • 8/19/2019 17.WM-RC Landfill Leachate

    24/33

    UniPD 17.24

    Quality

  • 8/19/2019 17.WM-RC Landfill Leachate

    25/33

    UniPD 17.25

     Leachate omposition

      average values  acetogenic phase

      average values  methanogenic phase

    4hrig, ERIR ruse, ERR 4hrig, ERIR ruse, ERR

    p ( J,E S, I,F S,J

    0?DH  mg/l ENFFF JNFF EIF KNF

    ?D mg/l KKFFF RHFF NFFF KHFF

    0?DH /?D ( F,HI F,FJ

    %ulphate mg/l HFF KFF IF KF

    a mg/l EKFF JHF JF KFF

    $g mg/l SF KIH EIF EHF

    @e mg/l SIF ENH EH KH$n mg/l KH EE F,S K

    n mg/l H K,K F,J F,J

    %r mg/l S E

     A? Vg/l EJS KFF EFF ESKH

     

     Average concentrations of biochemical influenced leachate components

  • 8/19/2019 17.WM-RC Landfill Leachate

    26/33

    UniPD 17.26

     

     Average concentrations of non biochemical influenced leachate components

    4hrig, ERIR ruse, ERR

    T) Mmg / lO EKHF RKF

    )() Mmg / lO SF SF

    ges. P / total )  Mmg / lO J J,I

    hlorid Mmg / lO KEFF KEHF

    )a Mmg / lO ENHF EEHF Mmg / lO EEFF IIF

     As MVg / lO EJF KH,H

    Pb MVg / lO RF EJF

    d MVg / lO J NS,H

    r MVg / lO NFF EHH

    o MVg / lO HH

    u MVg / lO IF RF)i MVg / lO KFF ERF

    g MVg / lO E,H

    T) 7 total Weldal nitrogen

     Leachate omposition

  • 8/19/2019 17.WM-RC Landfill Leachate

    27/33

    UniPD 17.27

    Leachate management options

    +  A. n situ * recirculation+ 0. ?n site* leachate treatment plant

    + . ?ff site* co(treatment at eternal

    facilities #industrial or domestic'

    + ,

    C

  • 8/19/2019 17.WM-RC Landfill Leachate

    28/33

    UniPD 17.2

      *everse +smosis

    Leachate treatment options

    Biological Treatment 

      Adsorption

     

    +xidation

      +one - / 

     'locculation$)recipitation - 0eutralisation

     1iological Treatment 

      Adsorption

     

    2vaporation

      3esiccation

      Leachate

      cleaned

    Leachate

  • 8/19/2019 17.WM-RC Landfill Leachate

    29/33

    UniPD 17.2!

    %election criteria for treatment

    !oung $edium ?ld

    ?D #mg/l' C EF.FFF HFF(EF.FFF HFF?D/T? K,S K,F(K,S K,F

    0?DH/?D C F, F,E(F, F,E

    0iological treatment

    hemical precipitation

    ?;one

    2everse osmosis

     Activated carbonon echange

    good good4fair fair fair4poor poor  

  • 8/19/2019 17.WM-RC Landfill Leachate

    30/33

    UniPD 17.3"

    e issues in leachate treatment

    + )X? in acid phase leachate is easy to degrade #X@As6'but )X? in methanogenic phase leachate is hard todegrade* t is difficult to obtain low effluent concentrationsby biological methods alone

    +  Ammonia can be treated by three approaches*( 0iologically by nitrification* )8 → )?K( → )?N(

    ( 0iologically by nitrification(denitrification* )8 → )?K( → )?N(aerobic/anaerobic )?N( → )K⇑

    ( Air stripping* ncrease p #p C pa 7 R.N' and air inWection )8 → )N ⇑

  • 8/19/2019 17.WM-RC Landfill Leachate

    31/33

    UniPD 17.31

     Aerobic treatment* nfluent and effluent concentrations

    !g"l

  • 8/19/2019 17.WM-RC Landfill Leachate

    32/33

    UniPD 17.32

     Activated %ludge Tan<

    )itrification, Denitrification

    0iological leachate treatment

  • 8/19/2019 17.WM-RC Landfill Leachate

    33/33

    UniPD

    Leachate treatment plant