6
 CHAPTER 6 1 Always State Assumptions!!! Possible Assumptions:  Laminar flow (fully developed)  Turbulent flow  Fully developed  Incompressible (Poiseuille) pipe flow  Atmospheric pressure (at where ever)  Negligible velocity (Very large tank draining) Subsection Summaries 6.1 Reynolds Number Regimes = =   2300  =   =  Viscosity  values usually around 1×10  6.2 Internal vs. External Viscous Flows = ( ) Laminar Flow: 0.06  For Turbulant Flow: 1.6  For Re 10 7  6.3 Head Loss  The Friction Factor = 2 = 8  

Fluid Mechanics White Seventh ed Chapter 6 Summary

Embed Size (px)

DESCRIPTION

A summary of chapter 6.Frank M. WhiteFluid Mechanics SI Units 7th ed

Citation preview

7/18/2019 Fluid Mechanics White Seventh ed Chapter 6 Summary

http://slidepdf.com/reader/full/fluid-mechanics-white-seventh-ed-chapter-6-summary 1/6

CHAPTER 6

1

Always State Assumptions!!!Possible Assumptions:

  Laminar flow (fully developed)

  Turbulent flow

  Fully developed

  Incompressible (Poiseuille) pipe flow

  Atmospheric pressure (at where ever)

  Negligible velocity (Very large tank draining)

Subsection Summaries

6.1 Reynolds Number Regimes

= =

 

≈2300 

=  

=  

Viscosity  values usually around 1 × 1 0− 

6.2 Internal vs. External Viscous Flows

= (

Laminar Flow: ≈0.06 

For Turbulant Flow:

1.6 ⁄   For Re≤107 

6.3 Head Loss – The Friction Factor

ℎ =

2 = 8

 

7/18/2019 Fluid Mechanics White Seventh ed Chapter 6 Summary

http://slidepdf.com/reader/full/fluid-mechanics-white-seventh-ed-chapter-6-summary 2/6

CHAPTER 6

2

6.4 Laminar Fully Developed Pipe Flow

  = 64 

Flow direction is in direction of falling HGL

= +  

= +  

Compare  and   if > the flow is from 1 to 2.

Generalized complete incompressible steady flow energy equation:

( +

2 + )

= ( +

2 + )

+ ℎ ℎ + ℎ 

Single Pipe Flow Problems

Known Flow Rate:1.  Use known flow rate to determine Reynolds number

= =

=  

2.  Identify whether flow is laminar of turbulent

Laminar < 2300 < Turbulent

3.  Use correct expression to determine friction factor

Laminar

  =

 

Turbulent   ←   (Read off of Moody)

4.  Use definition of ℎ to determine friction head loss

ℎ =

5.  Use general energy equation to determine total pressure drop

(

+

2 + )

= (

+

2 + )

+ ℎ ℎ + ℎ 

7/18/2019 Fluid Mechanics White Seventh ed Chapter 6 Summary

http://slidepdf.com/reader/full/fluid-mechanics-white-seventh-ed-chapter-6-summary 3/6

CHAPTER 6

3

Unknown Flow Rate

1.  Assume infinite Reynolds Number

2. 

Obtain friction factor as function of roughness only

  ←   (Read off of Moody)

3.  Obtain first guess of velocity based on energy conservation

4.  Update Reynolds number

5.  Update friction factor based on Reynolds number and 

EXAMPLE: Chapter 6 Lecture Notes slide 11 on p.6

After equation for V is derived: = √ .   ………… (1) 

For Reynolds number

=50000  ………… (2) 

Initial  to determine search line:

=.

=0.002 

Assume fully turbulent: → ∞    ← 0.002 ∴ = 0.0235 

The assumption of fully turbulent flow is to get initial  

1.  Insert  into eqn. (1) to get new  

∴ = 1 . 4 5 9 

2.  Insert new  into eqn. (2) to get new  

3.  Look up new

 on predetermined 0.002

 line to determine new

  

4. 

Repeat steps 1 to 3 until  is stable

7/18/2019 Fluid Mechanics White Seventh ed Chapter 6 Summary

http://slidepdf.com/reader/full/fluid-mechanics-white-seventh-ed-chapter-6-summary 4/6

CHAPTER 6

4

Unknown Diameter:

Example 6.10

Find functions that define the diameter of the pipe. In this example:

  =  

  to ≈0.655/ 

=

  to

=

 

= 6 × 1 0− 

 

1.  Guess  

2.  calculate  

3.  use  to calculate  and 

4.  use

 and

 to find new

  

5.  Repeat steps 1 to 4 until  becomes stable

7/18/2019 Fluid Mechanics White Seventh ed Chapter 6 Summary

http://slidepdf.com/reader/full/fluid-mechanics-white-seventh-ed-chapter-6-summary 5/6

CHAPTER 6

5

Minor or Local Losses in Pipe SystemsSee Example 6.16

∆ℎ = ℎ + ∑ ℎ = 2 (  + ∑ ) 

When flow is exiting a pipe to a large reservoir (submerged exit): K =1 ALWAYS!!!!! 

Other values for the resistance coefficient k  can be read of various graphs in section 6.9 (Minor of

Local Losses in Pipe Systems).

Fig 6.18a: Recent measured loss coefficients for 900 elbows (p.401)

Fig 6.18b:  Average loss coefficients for partially open valves (p.402)

Fig 6.20:  Resistance for smooth-walled 450, 90

0 and 180

0 bends At Re = 200 000.

Fig 6.21 a & b:  Entrance and exit loss coefficients

Fig 6.22:  Sudden expansion and contraction losses

Fig 6.23:  Flow losses with gradual conical expansion

Sudden expansion:

= 1 =

Sudden Contraction:

7/18/2019 Fluid Mechanics White Seventh ed Chapter 6 Summary

http://slidepdf.com/reader/full/fluid-mechanics-white-seventh-ed-chapter-6-summary 6/6

CHAPTER 6

6

≈0.42 1  

Multiple Pipe Systems

Ugh… read p.407 to p.413