12
236 Introducción a la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra Juan Pablo Bernal 1,* y L. Bruce Railsback 2 1 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cuidad de México, México. 3 Department of Geology, University of Georgia, Athens, Georgia 30602-2501, EE. UU. * [email protected] RESUMEN En el presente artículo se muestran los principios y ventajas que ofrece la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra, originalmente publicada en Railsback, L.B., 2003, An Earth scientist’s periodic table of the elements and their ions, Geology, 31(9): 737-740. A diferencia de la tabla periódica convencional, en donde únicamente se considera a los elementos en estado de oxidación cero, la Tabla Periódica de los Elementos y sus Iones acomoda a las especies de acuerdo a los estados de oxidación posibles en la naturaleza. Esto implica el reacomodo de algunas especies así como la aparición de algunos elementos en diversas posiciones. La clasificación de las especies de acuerdo a su estado de oxidación permite que las características intrínsecas de cada ión, polarizabilidad y potencial iónico (ϕ), pongan en evidencia algunas tendencias biogeoquímicas previamente elucidadas de manera semiempírica. A partir de la polarizabilidad es posible establecer patrones de reactividad y compatibilidad de los iones, mientras que el potencial iónico permite evidenciar tendencias en el comportamiento de los iones bajo diferentes condiciones de diferenciación geoquímica. Se muestra que la interacción de los diferentes iones con el ión óxido (O 2- ), modulada por el potencial iónico del catión, juega un papel fundamental en la mayoría de los procesos de diferenciación geoquímica, incluyendo hidrogeoquímica, intemperismo, petrogénesis ígnea, entre otros. Debido al amplio rango de aplicaciones, la Tabla Periódica de los Elementos y sus Iones tiene el potencial de convertirse en una herramienta de vital importancia para el estudioso en Ciencias de la Tierra. Palabras Clave: elementos, iones, tabla periódica, polarizabilidad, potencial iónico, clasificación. ABSTRACT This paper presents the basic principles behind “An Earth Scientist’s Periodic Table of the Elements and Their Ions”, originally published in Railsback, L.B., 2003, An Earth scientist’s periodic table of the elements and their ions, Geology, 31(9): 737-740. In contrast to Mendelejeff’s periodic table, where all elements are classified according to their ground state (or oxidation state = 0), the Periodic Table of the Elements and Their Ions, classifies elements and ions according to their natural oxidation state. Consequently, some elements are displayed in several positions within the table, and some others have been relocated. The classification of the ions according to their oxidation state allows the visualization of trends based upon intrinsic characteristics of each ion (such as polarizability and ionic potential) that evidence the biogeochemical behavior of the elements and their ions. Many of those trends were only semi-empirically inferred until now. Reaction paths for different ions are deducted from their polarizability, whereas the ionic potential allows to infer the behavior of the ions under diverse geochemical differentiation processes. Revista Mexicana de Ciencias Geológicas, v. 25, núm. 2, 2008, p. 236-246

la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

  • Upload
    vanlien

  • View
    217

  • Download
    2

Embed Size (px)

Citation preview

Page 1: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Bernal y Raislback236

Introducción a la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra

Juan Pablo Bernal1,* y L. Bruce Railsback2

1 Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Cuidad de México, México.

3 Department of Geology, University of Georgia, Athens, Georgia 30602-2501, EE. UU.

* [email protected]

RESUMEN

En el presente artículo se muestran los principios y ventajas que ofrece la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra, originalmente publicada en Railsback, L.B., 2003, An Earth scientist’s periodic table of the elements and their ions, Geology, 31(9): 737-740. A diferencia de la tabla periódica convencional, en donde únicamente se considera a los elementos en estado de oxidación cero, la Tabla Periódica de los Elementos y sus Iones acomoda a las especies de acuerdo a los estados de oxidación posibles en la naturaleza. Esto implica el reacomodo de algunas especies así como la aparición de algunos elementos en diversas posiciones.

La clasifi cación de las especies de acuerdo a su estado de oxidación permite que las características intrínsecas de cada ión, polarizabilidad y potencial iónico (ϕ), pongan en evidencia algunas tendencias biogeoquímicas previamente elucidadas de manera semiempírica. A partir de la polarizabilidad es posible establecer patrones de reactividad y compatibilidad de los iones, mientras que el potencial iónico permite evidenciar tendencias en el comportamiento de los iones bajo diferentes condiciones de diferenciación geoquímica. Se muestra que la interacción de los diferentes iones con el ión óxido (O2-), modulada por el potencial iónico del catión, juega un papel fundamental en la mayoría de los procesos de diferenciación geoquímica, incluyendo hidrogeoquímica, intemperismo, petrogénesis ígnea, entre otros. Debido al amplio rango de aplicaciones, la Tabla Periódica de los Elementos y sus Iones tiene el potencial de convertirse en una herramienta de vital importancia para el estudioso en Ciencias de la Tierra.

Palabras Clave: elementos, iones, tabla periódica, polarizabilidad, potencial iónico, clasifi cación.

ABSTRACT

This paper presents the basic principles behind “An Earth Scientist’s Periodic Table of the Elements and Their Ions”, originally published in Railsback, L.B., 2003, An Earth scientist’s periodic table of the elements and their ions, Geology, 31(9): 737-740. In contrast to Mendelejeff’s periodic table, where all elements are classifi ed according to their ground state (or oxidation state = 0), the Periodic Table of the Elements and Their Ions, classifi es elements and ions according to their natural oxidation state. Consequently, some elements are displayed in several positions within the table, and some others have been relocated.

The classifi cation of the ions according to their oxidation state allows the visualization of trends based upon intrinsic characteristics of each ion (such as polarizability and ionic potential) that evidence the biogeochemical behavior of the elements and their ions. Many of those trends were only semi-empirically inferred until now. Reaction paths for different ions are deducted from their polarizability, whereas the ionic potential allows to infer the behavior of the ions under diverse geochemical differentiation processes.

Revista Mexicana de Ciencias Geológicas, v. 25, núm. 2, 2008, p. 236-246

Page 2: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra 237

INTRODUCCIÓN

La Tabla periódica de los elementos propuesta por Mendelejeff (1869) ha probado ser una herramienta de gran utilidad para predecir las propiedades químicas y físicas de los elementos, incluso de aquellos que no existen de manera natural en la Tierra. A pesar de diversos esfuerzos recientes por mejorarla, la clasifi cación de los elementos propuesta por Mendelejeff hace casi 150 años sigue siendo parte fundamental de la instrucción química básica. Sin embargo, desde el punto de vista geoquímico, la tabla periódica tradicional presenta una serie de limitaciones que surgen, principalmente, del hecho de que describe las propiedades físicas y químicas de los elementos en su estado basal (o estado de oxidación = 0). Sin embargo, la mayoría de los elementos en la naturaleza ocurren con un estado de oxidación diferente de cero. Un ejemplo de esto son los metales alcalinos, tales como Li, Na, K y Rb; la tabla periódica tradicional permite establecer con gran precisión sus propiedades físicas y químicas, sin embargo, en ambientes naturales, siempre se encontrarán formando cationes univalentes, con propiedades químicas y físicas signifi cativamente diferentes de sus análogos metálicos. Por ejemplo, los metales alcalinos en estado basal son altamente incompatibles con el agua, mientras que los io-nes correspondientes son altamente compatibles con ésta. Al y Si son otros ejemplos de elementos que muestran un comportamiento contrastante al de sus iones; mientras que Si4+ y Al3+ se encuentran entre los iones más abundantes en la corteza terrestre (McDonough y Sun, 1995), las especies elementales son muy poco comunes, pero no inexistentes. Aunado a lo anterior, varios elementos presentan más de un estado de oxidación de manera natural, y las propiedades geoquímicas de cada uno de ellos no pueden ser explicadas utilizando la clasifi cación periódica de Mendelejeff.

En virtud de lo anterior, recientemente se ha propuesto una clasifi cación de los elementos y sus iones, que permite entender su comportamiento y asociaciones geoquímicas (Railsback, 2003), así como establecer las bases para la mineralogía sistemática (Railsback, 2005). De manera general, esta clasifi cación está basada en la estabilidad de los enlaces formados por los ácidos duros y blandos con los iones O2- y S2- (bases dura y blanda, respectivamente), así como en la densidad de carga de los diferentes cationes (potencial iónico), lo cual tiene implicaciones directas en el carácter del enlace formado con el ión O2-. Lo anterior implica que la interacción de los diferentes cationes con el oxígeno regula gran parte de los procesos de diferenciación

geoquímica. A diferencia de la tabla periódica de los elementos

de Mendelejeff, la nueva clasifi cación permite explicar tendencias y agrupaciones de elementos y iones previa-mente observados de manera empírica en diversos ramos de la geoquímica. Como resultado se tiene una herramienta integral que puede aplicarse al entendimiento de diversos procesos geoquímicos, desde la diferenciación elemental en el manto de la Tierra, hasta procesos de intemperismo, hidrogeoquímica y mineralogía.

De esta manera, el presente artículo pretende difundir entre la audiencia geológica de habla española las ventajas que ofrece la clasifi cación de Railsback (2003) para facili-tar la comprensión de las propiedades geoquímicas de los elementos y sus iones.

PRINCIPIOS PARA LA CLASIFICACIÓN

La Tabla Periódica de los Elementos y sus Iones ha sido organizada de acuerdo con la dureza o blandura de los iones. Se entiende como un ión duro aquel que posee una alta densidad de carga positiva alrededor del núcleo atómico y un radio iónico pequeño, por lo que la nube electrónica (carga negativa) alrededor del núcleo es poco deformable ante la infl uencia de un campo eléctrico externo (Figura 1a). Por otro lado, un ión blando posee una baja densidad de carga positiva alrededor del núcleo y es relativamente grande, de manera que la nube electrónica es fácilmente deformable ante la infl uencia de campos eléctricos externos (Figura 1b). Los términos “duro” y “blando” provienen de la teoría de ácidos y bases duros y blandos propuesta por Pearson (1963), la cual establece, de manera cualitativa, que cationes metálicos con alta carga y radio iónico pequeño (ácidos duros o tipo “A”), tienen la tendencia a asociarse de manera preferencial con ligantes o aniones pequeños y poco polarizables (bases duras, p. ej. F-, O2-). De manera contraria, aquellos cationes grandes y de baja densidad de carga (ácidos blandos o tipo “B”), correspondientes a iones que poseen electrones en la capa de valencia y que no han alcanzado su máximo estado de oxidación, tienden a aso-ciarse preferentemente con ligantes grandes y polarizables (bases blandas, p. ej. S2-, Se2-).

Como regla general, los ácidos duros reaccionan preferentemente con las bases duras y los ácidos blandos reaccionan preferentemente con las bases blandas (Cotton y Wilkinson, 1988), donde la “preferencia” debe entenderse como mayor velocidad de reacción y mayor conversión al

It is shown that the interaction of different cations with the oxide ion (O2-) plays a pivotal role in most processes of geochemical differentiation, such as aqueous geochemistry, weathering, igneous petrogenesis, among others. Because of the wide range of applications, The Periodic Table of The Elements and Their Ions is a valuable tool for the earth scientist.

Keywords: Elements, ions, periodic table, polarizability, ionic potential, classifi cation.

Page 3: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Bernal y Raislback238

Debido a que la polarizabilidad es una variable dependiente tanto de las características intrínsecas del ión (p. ej., carga, radio iónico, confi guración electrónica, etc.), como de la magnitud del campo eléctrico impuesto a éstos, no es posible establecer una escala absoluta de polarizabilidad de los iones, a diferencia de otros parámetros como la electronegatividad y el radio iónico. Sin embargo, es posible encontrar diversos ejemplos que demuestran el comportamiento periódico e internamente consistente de la polarizabilidad relativa de los elementos y sus iones (Cruz-Garritz et al., 1991).

La segunda característica intrínseca de cada ión que permite identifi car tendencias geoquímicas en la tabla pe-riódica de los elementos y sus iones es el potencial iónico (ϕ), el cual se defi ne como:

φ = z (2) r

en donde z representa la carga del ión y r el radio iónico. En general, ϕ puede entenderse como la densidad de carga en el ión. De esta manera, dos iones con radios iónicos semejantes pero cargas diferentes tendrán valores de ϕ diferentes, y por ende diferente densidad de carga (Figura 1 a y c); al igual que dos iones con la misma carga y radio iónico diferente tendrán valores distintos de ϕ.

La clasifi cación de los elementos y iones de Railsback (2003) no corresponde al primer intento en utilizar el poten-cial iónico de los iones como factor de clasifi cación. Victor Goldschmidt había visualizado un sistema de clasifi cación similar (Goldschmidt, 1937), pero no consideró que algunos elementos podrían aparecer varias veces en dicha clasifi ca-ción debido a que presentan estados de oxidación múltiple. A diferencia de Goldschmidt, y de manera previa, Cartledge (1928a; 1928b) propuso una clasifi cación de elementos y iones que puede considerarse precursora de la que presenta Railsback (2003), ya que ésta sí consideraba el estado de oxidación de los iones en su localización dentro de la tabla periódica. Por otra parte, en petrología ígnea es común referirse a algunos elementos relevantes como “Large Ion

equilibrio (Cruz-Garritz et al., 1991). Asimismo, los enlaces formados entre ácidos y bases con el mismo carácter relati-vo de dureza son altamente estables y difíciles de romper, mientras que la interacción entre un ácido y una base con diferente carácter de dureza es poco estable.

Como todo sistema de clasifi cación, existen casos de frontera donde las propiedades de dureza o blandura no están claramente defi nidas, tal es el caso de la mayoría de los elementos de transición, en donde el estado de oxidación es el factor determinante de la dureza del ión. De manera general, los ácidos intermedios o de frontera reaccionan preferentemente con bases blandas o de frontera, aunque el mismo carácter limítrofe de éstos los hace más proclives a generar casos “excepcionales”, tal es el caso de la anglesita (PbSO4), la cual es el producto de un ácido intermedio (Pb2+), con una base dura (SO4

2-). A pesar de diversos esfuerzos para parametrizar la

dureza de los iones (Yamada y Tanaka, 1975; Parr y Pearson, 1983), dichos modelos no han facilitado la conceptualiza-ción de la propuesta cualitativa de Pearson (1995), por lo que resulta más sencillo asociar la dureza de los iones con la polarizabilidad. Ésta se refi ere a la tendencia que presenta la nube electrónica alrededor de un ión a ser distorsionada por un campo eléctrico externo causado por un dipolo u otro ión cercano (Cruz-Garritz et al., 1991). Un ión duro presenta alta densidad de carga positiva cerca del núcleo, por lo que la nube electrónica alrededor de él no es fácilmente deformable, es decir es poco polarizable (Figuras 1a, 1c). Por otro lado, un ión blando se caracteriza por tener baja densidad de carga positiva cerca del núcleo, por lo que una carga o campo eléctrico externo puede deformar o polarizar fácilmente la nube electrónica alrededor de él (Figura 1b) (Cotton y Wilkinson, 1988). De manera formal, la porali-zabilidad se defi ne como la relación del momento dipolar inducido (μi) de un átomo a la intensidad del campo eléctrico (E) que produce el dipolo αi, de manera que:

αi = μiE (1)

a) b) c)

Figura 1 Modelo conceptual simplifi cado ilustrando la polarizabilidad de dos cationes y las diferencias en potencial iónico (ϕ). a: Ejemplo de un ácido duro: catión monocargado y radio iónico pequeño lo que hace que la nube de electrones a su alrededor sea difícil de distorsionar. b: Ácido blando: ión con radio iónico grande y baja carga, lo que permite que la nube de electrones alrededor del núcleo sea fácilmente distorsionable, es decir el ión es polarizable. La línea punteada ilustra una posible deformación de la nube electrónica. c: Ión con alto potencial iónico, al poseer el mismo radio que (a), pero mayor carga (en este caso 3+), lo que se refl eja en una mayor densidad de carga.

Page 4: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra 239

Lithophile Elements y High Field-Strength Elements” (tam-bién conocidos como LILE y HFSE, o elementos litófi los de radio iónico grande y elementos de alto potencial iónico o alto campo, respectivamente) con afi nidades minerales diametralmente opuestas, y cuya defi nición está basada, precisamente, en la relación entre la carga y el radio iónico correspondiente (Albarede, 2003). La principal diferencia entre los esfuerzos anteriores y la clasifi cación de los ele-mentos y iones de Railsback (2003) es la inclusión del trazo de contornos de potencial iónico, o contornos equipotencia-les (Figura 2), que permiten identifi car fácilmente grupos de elementos cuyo comportamiento es similar bajo diversas condiciones y procesos de diferenciación geoquímica.

Cabe subrayar que la dureza o blandura de un ión es equivalente a su polarizabilidad, y es función del radio iónico y del número de electrones que posee en la capa de valencia. Aquellos iones sin electrones en la capa de valencia son poco polarizables y, por lo tanto, de mayor dureza que aquellos de tamaño similar pero que cuentan con electrones en la capa de valencia. Por otra parte, ϕ se refi ere únicamente a la relación carga/radio del ión, por lo que dos iones con carga y radios similares tendrán valores de ϕ similares, lo cual no implica necesariamente que ambos iones compartan propiedades y/o afi nidades geoquímicas. Los iones Na+ y Cu+ representan un buen ejemplo para ilustrar lo anterior: ambos cationes poseen radios iónicos semejantes (0.96 y 0.95 Å, respectivamente) por lo que, al poseer la misma carga, tienen valores muy similares de ϕ. Sin embargo, mientras que el Na+ es un ácido duro por no poseer electrones en la capa de valencia, el Cu+ es un ácido blando por poseer un electrón en la capa de valencia. Lo anterior tiene como consecuencia que el Cu+ no pueda sustituir al Na+ en los feldespatos debido a la incapacidad del primero para formar enlaces covalentes estables con O2- (Ringwood, 1955a). De manera similar, el Tl+ (ácido blando) no sustituye de manera isomórfi ca al K+ (acido duro) en ningún mineral, a pesar de que los radios iónicos de ambas especies (1.40 y 1.33 Å) permitirían pensar que dicha sustitución es factible. Cabe mencionar que, a pesar de la poca difusión de estos principios en las Ciencias de la Tierra, éstos han sido utilizados previamente para la descripción de distintos procesos geoquímicos (p.ej., Lasaga y Cygan, 1982; Abbott, 1994; Auboiroux et al., 1998; Tomkins y Mavrogenes, 2001).

DESCRIPCIÓN DE LA TABLA

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra (Figura 3) se encuentra organizada de acuerdo con la carga de cada una de las especies. La gran mayoría de las especies aparecen en posiciones similares que en la tabla periódica convencional. Sin embargo, algu-nos elementos que típicamente se encuentran en la parte derecha en una tabla periódica clásica (p. ej., B, C, Si), se han reubicado hacia la parte izquierda de la tabla como B3+,

C4+ y Si4+. Además, como ya se mencionó anteriormente, algunos elementos aparecen en varias posiciones como resultado de los diversos estados de oxidación que pueden presentar. Tal es el caso de P y U que aparecen dos veces, mientras que V, Fe, C y N lo hacen en tres ocasiones, y S hasta en cuatro ocasiones (S2-, Sº, S4+ y S6+).

La tabla se encuentra separada en diversos bloques para diferenciar entre gases nobles, ácidos duros o tipo A, ácidos blandos o tipo B, especies elementales (sin carga) y aniones (Figura 3). Dicha separación permite racionalizar la interacción entre las diversas especies, ya que los ácidos duros reaccionarán preferentemente con las bases duras, mientras que los ácidos blandos son más compatibles con bases blandas. Un ejemplo de dicha tendencia es la solubi-lidad de los haluros de cationes duros y blandos. Como se puede observar en el recuadro 8 de la Figura 3, la mezcla de un ácido duro (Mg2+) con una base dura (F-), o un ácido blando (Ag+) con una base blanda (I-) produce los haloge-nuros sólidos más insolubles para los respectivos cationes. Por el contrario, los productos de un ácido duro con una base blanda (p. ej., NaI) o un ácido blando con una base dura (p. ej., AgF) resulta en los halogenuros más solubles de la serie correspondiente, debido a que el enlace catión-anión es poco estable. De la misma manera es posible explicar la inexistencia de sulfuros de Ca2+, o de otros ácidos duros, y justifi car la existencia de óxidos y sulfatos de dichas espe-cies. Por otra parte, la existencia de sulfuros minerales de elementos del grupo del Pt, y no de sus óxidos, representa un ejemplo del caso contrario.

Otra diferencia importante entre la “Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra” y la tabla convencional, consiste en la aparición de los elementos naturales del grupo de los actínidos con los ácidos interme-dios y duros, de esta manera Th4+ se encuentra por debajo del Hf4+, el U4+ por debajo del W4+ (todos intermedios) mientras que el U6+ se encuentra debajo del W6+ (ambos duros). Aunque dicho acomodamiento es poco convencional, las tendencias descritas en las siguientes secciones justifi can dicho arreglo.

La tabla también proporciona información útil como el nombre del elemento y/o ión, número y masa atómica, radio iónico, isótopos naturales de cada elemento, así como rutas de decaimiento radioactivo. Cada elemento y/o ión está acompañado por una simbología (Figura 4) que per-mite identifi car algunas de las principales características biogeoquímicas de la especie, lo que ayuda al usuario en la identifi cación de tendencias naturales en la distribución de las especies correspondientes. Asimismo, el tamaño del símbolo del elemento/ión está escalado a su abundancia en la corteza terrestre.

PATRONES Y TENDENCIAS EN LA TABLA

Los símbolos asociados a cada elemento y ión (Figura 3 y 4) indican si éstos se encuentran enriquecidos en mi-

Page 5: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Bernal y Raislback240

z/r = 1

z/r = 4z/r = 2

= 32 =zr

C s 55

m=132.905

133

r=1.69

+

F r 87

(223)

223

r=1.76

+137 138

B a 56m=137.327

130 132r=1.35

134 135 136

2+

R a 88

(226)

223 224r=1.40

226 228

2+

z / r= 16

?

Ac 89m=227.03

r=1.18

227 228

?

3+ P u 94

239

Np 93

237 ?

92

234 235 238*r=0.7

m=238.029

U6+P a 91(231)

(+4 r=0.98)

231 234

5+

+L i 3m=6.941

6 7

r=0.60

Na 11m=22.990

23

r=0.95

+

+

R b 37m=85.468

85 87

r=1.48

+

B e 4

m=9.012

9

r=0.31

2+

S r 38m=87.62

87 8884 86

r=1.13

2+

B 5

m=10.811

10 11

r=0.20

3+ C 6

12 13 14

m=12.011

4+

15r=0.

r=0.25

Mn7+C r 24

m=51.996

50 52 53 54

r=0.52

6+V 23

m=50.942

50 51r=0.59

5+

96 98 100

Mo 42

m=95.94

92 94 95 97r=0.62

6+

R e 75

m=186.207r=0.56

185 187

7+

r=0.68

W 74

180 182 183184 186

m=183.84

6+

z/r= 1

Si 14

m=28.086

28 29 30

r=0.41

4+

H 1

1 2 3

m=1.0079r=10-5

+

zr = 8/

zr =

8/

S c 21m=44.956

45

r=0.81

(48)

3+

Al 13

m=26.982

27

r=0.50

3+

Fe3+

49 50

Ti 22m=47.867

46 47 48

r=0.68

4+

Zr 40m=91.224

90 91

r=0.80

92 94 96 ?

4+

L a 57-71

170Y bVer Abajo

3+ Hf 72m=178.49

174 176 177r=0.81

178 179 180

4+Ta 73

m=180.948

180 181

r=0.73

5+

Th 90m=232.038

227 228 230

r=0.95(+3 r=1.14)

231 234232*

4+

Y 39m=88.906

89

r=0.93

3+ Nb 41

m=92.906r=0.70

(96)93

5+

N 7

m=14.007

14 15

r=0.11

5+

P

m=30.974

31r=0.34

515+ S 16

m=32.066

3233 34 36

r=0.29

6+

K 19m=39.098

39 40 41

r=1.33

C a 20m=40.078

40 42 4344 46 48

2+

r=0.99

Mg 12m=24.305

24 25 26

r=0.65

2+

F e2+

Cationes que se coordinan con H2O (o CO32- o

SO42-) en disolución

Cationes que se coordinan con OH- (o

H2O) en disolución

ión hidrógeno

ión litio ión berilio

ión sodio ión magnesio

ión potasio ión calcio

ión rubidio ión estroncio

ión cesio ión bario

ión francio ión radio

Cationes que se coordinan con OH- (o O2-) en

disolución

ión boro Carbón p.ej., CO2,bicarbonato (HCO3-)y carbonato (CO32-)

Nitrógenop.ej., ión nitrato NO3

-

Cationes que se coordinan con O2- en disolución, (p.ej.,

NO3-, PO43-, SO42-, etc.)

Cationes “duros” o “Tipo A”(Todos los electrones son removidos de la capa de valencia y, por lo tanto, poseen configuración

electrónica de gas noble)Coordinan F>O>N=Cl>Br>I>S

Se coordinan fácilmente con el O de grupos carboxilos de ligantes orgánicos

(ver recuadros 1-5,7)

ión aluminio como Al3+ o Al(OH)n3-n

silicato (SiO44-) o H4SiO4

Fósforo en fosfato (PO43- o HPO42-)

ión escandio ión titanio ión vanadio p.ej., vandato

ión ytrio ión circonio ión niobio

ETRión hafnio ión tántalo

p.ej., tantalatos

ión actinio ión torio ión protactinio

Carga del ión /radio iónico

Azufre en sulfato (SO42-)

ión cromo p.ej., cromato (CrO4

2-)per-manga-nato(MnO4-)

Molibdeno en molibdatos

tungsteno en tungstatos ión renio

uranio en uranilo (UO22+)

Neptunio Plutonio

Ocurrencianatural muy

limitada

Ocurrencianatural muy

limitada

z/r=

2

z/r = 4

Figura 2 Sección izquierda de la Tabla Periódica de los Elementos y sus Iones, en la que se ilustra los contornos equipotenciales. Obsérvese como, para cualquier periodo, ϕ (Ecuación 1) se incrementa de izquierda a derecha. La zona delimitada por los contornos ϕ=4 y ϕ=8 corresponde a aquellos cationes que forman óxidos minerales presentes en las fases ígneas de alta temperatura, poco solubles en agua y enriquecidos en suelos, sedimentos y nódulos de hierro-manganeso

Page 6: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Revista Mexicana de Ciencias Geológicas, v. 25, núm. 2, 2008 Bernal y Railsback, Figura 3

N 7m=14.007

14 15

r=1.71

3–

S 16

323334 36

r=1.84m=32.066

2–

78 80 82

S e

m=78.96

74 76 77r=1.98

342–B r 35

m=79.904

79 81 (82)

r=1.95(7+ r=0.39)

C l 17

m=35.453

35 37

r=1.81

C 6m=12.011

12 13 14

r=2.60

4–

15

m=30.974r=2.12

3–P

51

r=2.45121 123

S b

m=121.760

3–

FeZrL iL u

At 85

215 218 219

R n 86

(222)

220 222218 219

S i 14

m=28.086r=2.71

4–

He 2

3 4

m=4.0026r=1.2

Ne 10

20 21 22

m=20.180r=1.5

Ar 18

36 38 40

m=39.948r=1.8

K r 36

78 80 8283 84 86

m=83.80r=1.9

Xe 54

129 130 131132 134 136

124 126 128

m=131.29r=2.1

As 33

m=74.922

75

r=2.22

3–

z/r = 1

R n 86

(222)

219 220 222

z/r = 4z/r = 2He 2m=4.0026

3 4

r=1.2

Ne 10

m=20.180

20 21 22

r=1.5

Ar 18

m=39.948

36 38 40

r=1.8

K r 36

m=83.80

78 80 8283 84 86

r=1.9

Xe 54m=131.29

129 130 131132 134 136

124 126 128r=2.1

= 32 =zr

C s 55

m=132.905

133

r=1.69

+

F r 87

(223)

223

r=1.76

+137 138

B a 56m=137.327

130 132r=1.35

134 135 136

2+

R a 88

(226)

223 224r=1.40

226 228

2+

z / r= 16

?

Ac 89m=227.03

r=1.18

227 228

?

3+ P u 94

239

Np 93

237 ?

92

234 235 238*r=0.7

m=238.029

U6+P a 91(231)

(+4 r=0.98)

231 234

5+

+L i 3m=6.941

6 7

r=0.60

Na 11m=22.990

23

r=0.95

+

+

R b 37m=85.468

85 87

r=1.48

+

B e 4

m=9.012

9

r=0.31

2+

S r 38m=87.62

87 8884 86

r=1.13

2+

B 5

m=10.811

10 11

r=0.20

3+ C 6

12 13 14

m=12.011

4+

15r=0.

r=0.25

Mn7+C r 24

m=51.996

50 52 53 54

r=0.52

6+V 23

m=50.942

50 51r=0.59

5+

96 98 100

Mo 42

m=95.94

92 94 95 97r=0.62

6+

R e 75

m=186.207r=0.56

185 187

7+

r=0.68

W 74

180 182 183184 186

m=183.84

6+

Tc 43

(100)99

z r/= 4

z/r = 16

Po

210 211 212

216 218214 215

84

zr/ = 8

3+ r= 0.64

Mn 25

4+ r=0.53

3,4+ Fe 26

r=0.64

3+ C o 27

r=0.63

3+ S n 50r=0.71

4+

Sn 50

m=118.710

112 114 115 116r=1.12

120 122 124117 118 119

2+

102 104

R u 44m=101.07

96 98 99

3+ r=0.694+ r=0.67

100 101

3,4+ Pd 46

m=106.42

102 104 105106108 110

r=0.86

2+

R e 75m=186.207

185 187

r=0.65

4+

212 214

Pb 82m=207.2

204 206 207

r=1.20

208 210 211

2+

Pb 82r=0.84

4+

Bi 83m=208.980

r=1.20

212 214 215209 210 211

3+

Bi 83r=0.74

5+

r=0.61

V 234+

z/r =

8

As 33

r=0.47

5+

As 33

m=74.922

75r=0.69

3+r=0.62

S b 515+

Sb 51

m=121.760r=0.90

121 123

3+

S 16r=0.37

4+ S e 34

r=0.42

6+

78 80 82

Se 34

m=78.96

74 76 77r=0.50

4+

52r=0.56

Te6+

128 130

52

m=127.60

120 122 123r=0.89

124 125 126

Te4+ 53

r=0.44

I5+

m=126.904

176Hf?

P m 61

(150)?

z/r = 2

138B a

z/r =

4z/r =

2

z/r=

1

L a 57

m=138.906r=1.15

138 139

3+

142

C e 58m=140.116

136 138 140r=1.11

3+

148 150

Nd 60m=144.24

142 143 144r=1.08

146 145?

3+

E u 63m=151.964

151 153r=1.03

3+

G d 64m=157.25

152 154 155r=1.02

158 160156 157

3+Tb 65

m=158.925r=1.00

159

3+ Dy 66m=162.50

156 158r=0.99

163 164160 161 162

3+Ho 67

m=164.930

165r=0.97

3+ E r 68

m=167.26

162 164 166r=0.96

167 168 170

3+Tm 69

m=168.934

169r=0.95

3+ Yb 70m=173.04

168 170 171

r=0.94(2+ r= 1.13)

174 176172 173

3+Lu 71

m=174.967

175 176r=0.93

3+Pr 59m=140.908

141

r=1.09(4+ r=0.92)

3+r=1.01

C e 584+

152 154

S m 62m=150.36

144 147 148r=1.04

149 150

3+

E u 63

r=1.12

2+

C6

r=0.77

S16

S i14

r=1.34

S e34

r=1.6

C d48

r=1.56

In49

r=1.66

52Te

r=1.7

R e75

r=1.37

Ta73

r=1.46

2N7

r=0.71

O8

2

B i83

r=1.82

Pb82

r=1.75

C r24

r=1.27

C o27

r=1.25

Ni28

r=1.24

Fe26

r=1.26

P d46

r=1.37

R h45

r=1.34

R u44

r=1.34

Os76

r=1.35

Ir77

r=1.35

Zn30

r=1.39

Al13

r=1.43

As33

r=1.48

S b51

r=1.61

S n50

r=1.58

Au79

r=1.44

Ag47

r=1.44

P t78

r=1.38

C u29

r=1.28

Hg80

r=1.60

Tl81

r=1.71

Li N

R b O2–

H+

Si 14

m=28.086

28 29 30

r=0.41

4+

V 23m=50.942

50 51r=0.74

3+

C r 24

m=51.996

50 52 53 54

r=0.69

3+

54 56 57 58

La3+Ba2+ Hf4+C s+

Y 3+S r 2+ Zr4+ Nb5+R b+

C a2+ T i4+ V5+K +

AlMg2+ S i4+ P5+Na+

B3+Be2+ C4+Li +

3+

251

240

160254198 38

210 216115

87

71

3

145

152*

175

38 71210

200

150100

50

z / r=

1

z / r=

1

z / r= 4

C d 48

114 116111 112 113

r=0.97106 108 110

m=112.411

2+ In 49

m=114.818

1+ r=1.32

113 115

3+ r=0.81

1,3+

Au 79

m=196.967r=1.37

197

(3+ r=0.85)

+ T l 81m=204.383

r=1.40

207 208 210203 205 206

+

T l 81r=0.95

3+202 204 206

Hg 80

m=200.59

196 198 199r=1.19

200 201

+

Ag 47

m=107.868r=1.26

107 109

+

+

63 65

C u 29m=63.546

r=0.96

Ti 22r=0.90

2+

C r 24r=0.90

2+

H 1

1 2 3

m=1.0079r=10-5

+

Ni 28

r=0.73

3+

61 62 64

Ni 28m=58.693

58 60r=0.72

2+

r=0.62

Ga 31

m=69.723

69 71(1+ r=1.13)

3+

70 72 73 74 76

Ge 32m=72.61

(2+ r=0.93)r=0.53

4+

H 1

m=1.0079

1 2 3r=2.08

O 8m=15.999

16 17 18

r=1.40

2–

Hg 80r=1.10

2+

zr = 8/

zr =

8/

z/r =

4

z / r=

2

C rMn

2+

Fe3+

Fe2+C o2+

Ni2+ C u+ Zn2+

S n4+

Pb2+

B i3+

2603

2054 1652

1838

2078 2228 15092242

1903

10981170

S b928

As547

C d2+

>1773

C u2+

1719Ga3+

2079G e

4+

1388

Ag~473(d)

+

T l852

+

T l3+

1107

S n2+

1353(d)

Hg2+

773(d)Au+

2400

2000

1600

1200

800

C o3+

1168 V

4+

2240

Mn3+

1353

As5+

588

In3+

2185Pd2+

1023R h2+

1373(Mo

4+

1373(d)

W4+

~1773(d)R e4+

1173(d)P t 2+

598(d)

Au3+

423(d)Hg+

373(d)

3+1600

2000

Ir 3+

1273

1200

3+ 3+

400

S c 21m=44.956

45

r=0.81

(48)

3+

Al 13

m=26.982

27

r=0.50

3+

Fe3+

49 50

Ti 22m=47.867

46 47 48

r=0.68

4+

Zr 40m=91.224

90 91

r=0.80

92 94 96 ?

4+

L a 57-71

170Y bVer Abajo

3+ Hf 72m=178.49

174 176 177r=0.81

178 179 180

4+Ta 73

m=180.948

180 181

r=0.73

5+

Th 90m=232.038

227 228 230

r=0.95(+3 r=1.14)

231 234232 *

4+ 92r=0.97

U4+

74

m=183.84

180 182 183r=0.64

184 186

W4+

190 192

Os 76m=190.23

184 186r=0.69

187 188 189

4+Ir 77

m=192.217r=0.66

191 193

4+97 98 100

42m=95.94

92 94 95 96r=0.68

Mo4+

Ti 22r=0.75

3+

128 130

52

m=127.60

120 122 123r=2.21

124 125 126

Te2–

B i 83

m=208.980

2–

Y 39m=88.906

89

r=0.93

3+ Nb 41

m=92.906r=0.70

(96)93

5+ R h 45

m=102.906r=0.86

103

2+

Pt 78m=195.078

190 192 193

r=0.96

196 198194 195

?

2+

r/=

1 2–

z r/=

1–

z r/=

2–

F 9

m=18.998

19

r=1.36

La3+ Hf4+ Ta5+ W6+

Y 3+S r2+ Zr 4+ Nb5+ Mo6+

C a2+ T i4+ V 5+K + C r6+

AlMg2+S i4+ P5+Na+ S6+

B 3+Be2+ C4+ N5+Li +

Th4+

3+

4.4–7.4 2.77

9.9–2.4 –8.1 –3.9 –1.37

14.01.4

S c3+

–9.7 –7.6

R b+

28.94.3

Ba2+6.7

–9.7

La3+ Hf4+ Ta5+ W6+

Y 3+S r2+ Zr 4+ Nb5+ Mo6+

T i4+ V 5+ C r6+

Al S i4+ P5+ S6+

B 3+Be2+ C 4+ N5+Li +

Th4+

3+

9

Mg2+Na+

5.5-67.5-8 9 7

3-3.55.5

3-4

7

6

C a2+K +3.5

6.5

>9

8.5

7

5.5

H=4

H=4

H=6

H=8

H=

6

*

6.5

3000

La3+Ba2+ Hf4+ Ta5+C s+ W6+

Y 3+S r2+ Zr 4+ Nb5+R b+ Mo6+

S c3+C a2+ T i4+ V 5+K+ C r 6+

AlMg2+S i4+ P5+Na+ S6+

B 3+Be2+ C4+ N5+Li +

Th4+

1700

1193

2681 723 216

31251996 855 290

3200 2103 943

2+-----

3+

3+

-----

-----

673 2938 3123 1785 1074

2286 25802500

3173 2058 1745

3493

25

00

20

00

1000

500

30

00

2000

15

00 15

00

E n

Ti

AbFo

Di

K spAn

Q

IlC r

Ab 3+

An

Ti4+2103

Bi

v. 4.7g01c

F –

C l–

Br–

I– HgI2

100110-210-410-610-8

NaBr

NaI

AgF

MgBr2

MgI2

HgBr2

HgC l2(AgCl)

(AgBr)

(AgI)

(MgF2)(NaF)

(NaCl)

MgC l2

I 53

r=2.16(7+ r=0.50)

(124) 127(128) (130)

m=126.904

zr

Ge 54m=72.59

2 3 4

r=1.05

-+E C,

3+

MgAlBO4Me2+C O3

KNO3

S i4+ P5+ S6+

B3+ C4+ N5+NaNO3

Fe 26m=55.845r=0.76

2+

N 7

m=14.007

14 15

r=0.11

5+

P

m=30.974

31r=0.34

515+ S 16

m=32.066

3233 34 36

r=0.29

6+

K 19m=39.098

39 40 41

r=1.33

C a 20m=40.078

40 42 4344 46 48

2+

r=0.99

Mg 12m=24.305

24 25 26

r=0.65

2+

F e2+

55

Mn 25m=54.938

r=0.80

2+

59

C o 27m=58.933r=0.74

2+r=0.69

Cu 292+

Zn 30

m=65.39

64 66

r=0.74

67 68 70

2+

42Mo2+

Línea sólida para elementos y/o iones que ocurren de manera natural, línea punteada

para aquellos que rara vez o nunca se encuentran de manera natural

Símbolo(ver escala a la derecha)

Nombre

Masa atómica

Isótoposnaturales Radioactivo (itálicas)

Más abundante (negritas)

Radio iónico (r) (Å) (o radio atómico para la

forma elemental)

Número Atómico(número de protones)

Procesos de decaimiento radioactivo

= carga del ión / radio iónico =

potencial iónico o densidad de

carga

ión Germanio

Iones menos empobrecidos del manto en la formación de la corteza

Iones enriquecidos en CAIs (inclusiones ricas en Ca y Al en meteoritas) con respecto a la composición del sistema solarIones compatibles con primeras fases en cristalizar en rocas ígneas

Iones compatibles con últimas fases cristalinas en rocas ígneas debido a su gran tamaño (pincipalmente LILE)

Los 8 solutos más abundantes en agua marina

9° a 16° solutos más abundantes 17° a 22° solutos más abundantes

Soluto más abundante en agua de río (HCO3-)

2° a 8° solutos más abundantes en agua de río

Solutos que pueden ser nutrientes limitantes en los océanos

Solutos que son macronutrientespara plantas terrestres

Solutos que son micronutrientespara plantas terrestres

Iones escenciales para la nutrición de algunos vertebrados (minerales escenciales)

Iones que pueden ser limitantes para el crecimiento de bacterias

Iones comúnmente enriquecidos en suelos residuales o sedimentos (símbolo pequeño indica menor certeza)Iones en nódulos ferromangánicos procedentes del fondo del océano, enriquecidos con respecto al agua de mar

Cationes que forman minerales de fluoruros simples

Cationes que forman minerales de óxidos simples

Cationes que forman minerales de sulfuros simples

Cationes que forman minerales de bromuros o ioduros simplesCationes que forman minerales con base en un oxianión (p.ej: S6+ en sulfatos, A5+ en arsenatos)

Aniones que forman minerales con K+ y Na+

Aniones que forman minerales con Mg2+

Aniones que forman minerales con Al3+, Ti4+ y Zr4+

Aniones que forman minerales con Si4+

Aniones que forman minerales Cu+

Aniones que forman minerales Ag+

Aniones que forman minerales Au+

Elementos que ocurren de manera nativa en la naturaleza, reconocidos antiguamente

reconocidos después de 1963)

Elementos que forman aleaciones naturales minerales con Fe

Elementos que forman aleaciones naturales minerales con Cu

Elementos que forman aleaciones naturales minerales con OsElementos que forman aleaciones naturales minerales con Pt

Elementos que forman aleaciones naturales minerales con Au

Los 4 constituyentes más abundantes de la atmósfera

5° al 8° más abundantes

( reconocidos a partir de la Edad Media hasta 1862,

Los 10 elementos más abundantes en la corteza terrestre

11° al 20° elementos más abundantes en la corteza terrestre

21° al 30° elementos más abundantes en la corteza terrestre

31° al 40° elementos más abundantes en la corteza terrestre

Elementos considerados como principales constituyentes del núcleo de la Tierra (Fe>Ni>Co), posiblemente junto con S y O

Gases Nobles(no se ionizan)

Posición de Fe2+ y Fe3+ si

fueran cationes “duros”

Helio

Neón

Argón

Kriptón

Xenón

Radón

Cationes que se coordinan con H2O (o CO32- o

SO42-) en disolución

Cationes que se coordinan con OH- (o

H2O) en disolución

ión hidrógeno

ión litio ión berilio

ión sodio ión magnesio

ión potasio ión calcio

ión rubidio ión estroncio

ión cesio ión bario

ión francio ión radio

*Para fines de simplificación, no se han incluido las series de decaimiento

de 235U-207Pb y 232Th-208Pb

Cationes que se coordinan con OH- (o O2-) en

disolución

ión boro Carbón p.ej., CO2, bicarbonato (HCO3-) y carbonato (CO32-)

Nitrógeno p.ej., ión nitrato NO3

-

Cationes que se coordinan con O2- en disolución, (p.ej.,

NO3-, PO43-, SO42-, etc.)

Cationes “duros” o “Tipo A”(Todos los electrones son removidos de la capa de valencia y, por lo tanto, poseen configuración

electrónica de gas noble)Coordinan F>O>N=Cl>Br>I>S

Se coordinan fácilmente con el O de grupos carboxilos de ligantes orgánicos

(ver recuadros 1-5,7)

ión aluminio como Al3+ o Al(OH)n3-n

silicato (SiO44-) o H4SiO4

Fósforo en fosfato (PO43- o HPO42-)

ión escandio ión titanio ión vanadio p.ej., vandato

ión ytrio ión circonio ión niobio

ETRión hafnio ión tántalo

p.ej., tantalatos

ión actinio ión torio ión protactinio

Carga del ión /radio iónico

Azufre en sulfato (SO42-)

ión cromo p.ej., cromato (CrO4

2-)per-manga-nato (MnO4-)

Molibdeno en molibdatos

tungsteno en tungstatos ión renio

uranio en uranilo (UO22+)

Neptunio Plutonio

Ocurrencia natural muy

limitada

Ocurrencia natural muy

limitada

ión titanio

ión titanio

Cationes Intermedios(poseen algunos electrones en la capa de valencia)

Se pueden coordinar con S u O

ión vanadoso

ión vanadioión crómico

ión cromoso

ión manganoso

ión manganeso ión férrico

ión ferroso

ión molibdeno

Tecnecio

Ocurrencia natural muy

limitada

ión rutenio

Los elementos transuránidos (Z >94) no ocurren de manera natural

95: Americio 101: Mendelevio 96: Curio 102: Nobelio 97: Berkelio 103: Lawrencio 98: Californio 104: Rutherfordio 99: Einstenio 105: Hahnio (Dubnio)100: Fermio

ión tungsteno ión renio ión osmio

ión uranio

ión cobáltico

ión cobaltoso

ión niquélico

ión niqueloso

ión cúprico

ión cuproso

ión rodio ión paladio ión plata

Cationes “blandos” o “tipo B”(Contienen uno o varios electrones en la capa de valencia)

Coordinan I>Br>S>Cl=N>O>Fcomúnmente se coordinan con el C de compuestos orgánicos

(p.ej: compuestos organomercurados)

ión iridio ión platino ión oro

ión zinc ión galio

ión cadmio ión indio

ión mercuroso

ión mercúrico

ión teluroso

ión telúrico

Cationes que se coordinan con O2-, (± H2O) en disolución

ión germanio

ión estánico

azufre en sulfito (SO32-) arsenato (AsO43-) selenato (SeO42-)

antimoniato telurato

arsenito selenito (SeO32-)

ión estanoso ión antimonio p.ej., antimonitas

ión telurio p.ej., teluritas

ión iodato (IO3-)

ión plomboso

ión plúmbico

ión bismutoso

ión bismútico

Polonio

Elementos principales en meteoritas ferrosas (Fe>>Ni>>Co) y, junto con S y O, probablemente los elementos más abundantes en

el núcleo de la tierra

No metales

Elementos en forma nativa (sin carga)

aparte de los gases nobles

Gases

Cromo Hierro Cobalto Níquel Cobre Zinc

Rutenio Rodio Paladio Plata Cadmio Indio Estaño Antimonio Teluro

Arsénico Selenio

Aluminio Silicio

Carbono (diamante o grafito)

Nitrógeno Oxígeno

Azufre

Tántalo Renio Osmio Iridio Platino Oro Mercurio Talio Plomo Bismuto

Aniones que comúnmente se coordinan con H+

(p.ej: CH4, NH3, H2S, H2O, etc.)

AnionesVer recuadro 8

Hidrógeno como hidruros

ión carburo ión nitruro Oxígeno en óxidos ión fluoruro

La mayoria de los carburos y nitruros naturales se encuentran en meteoritas y fases minerales del manto

La mayoria de los silicuros y fosfuros naturales se encuentran en meteoritas y fases minerales del manto

ión siliciuro ión fosfuro ión sulfuro ión cloruro

ión arseniuro ión selenuro ión bromuro

ión antimoniuroión teluro ión ioduro

ión bismuturo Astatino

Los únicos bismuturos minerales son de Pd,

Ag, Pt, Au y Pb

Ani

ones

con

los

que

los

catio

nes

“dur

os” s

e co

ordi

nan

pref

eren

tem

ente

Inte

rmed

ios

Ani

ones

con

los

cual

es lo

s ca

tione

s “b

land

os” s

e co

ordi

nan

pref

eren

tem

ente

Gases Nobles(no se ionizan)

Helio

Neón

Argón

Kriptón

Xenón

Radón

Recuadro 1: Incompresibilidad (Ks en GPa) para óxidos minerales de cationes “duros”

Mineral con un sólo catión

Cuarzo

Mineral con dos cationes

Perovskita

No mineral

Bromellita

Crisoberilo

EspinelaPericlasa

Corindón Cuarzo

Cal

Perovskita

RutiloTausonita

La Baddeleyita tiene un Ks = 95 GPa, sin em- bargo no corresponde a la fase más estable de ZrO2 en condiciones ambientales. Se mues- tra el Ks de la fase estable en condiciones ambientales

Recuadro 5: Minerales compuestos de oxisales simples (Minerales de la forma __MOn sin OH o H2O)

(Sinhalita) (p.ej: calcita) salitre

(Kspar)(K-S-A)(Circón)

(Olimpita)

(Berlinita)

Anhidrita

Thenardita

K-S-A =Kyanita-Sillimanita-Andalusita

Minerales formados por cationes con estado de oxidación 1+ hasta 4+

Minerales formados por cationes con

estado de oxidación 1+ y

2+

Minerales formados sólo por cationes

con estado de oxidación 1+

Recuadro 6. Temperaturas de fusión y descomposición (d) de óxidos minerales de cationes “intermedios” y “suaves”

Paramon-troseíta Eskolaíta

Man-ganosita

Hematita

Wüstita

Tugarinovita

Tenorita

Cuprita

Zincita

Casiterita

Argutita Arsenolita

Monteponita Romarchita Valentinita

BismitaMasicolita

AvicenitaMontroyditasin óxidos estables

Bunsenita

Recuadro 7. Modelo conceptual sobre el comporta- miento de los óxidos de cationes duros e intermedios

z/r bajo Enlace catión-

oxígeno débil

z/r intermedioEnlace catión-

oxígeno fuerte

z/r altoEnlaces catión- oxígeno muy fuertes, repulsión entre cationes

Recuadro 8. Solubilidad de haluros de cationes duros y suaves

MineralNo mineral

VilliaumitaSellaíta

Clorargyrita

Bromargyrita

Iodargyrita

Halita

Anión:

Solubilidad de haluros de Ag+ ( ), Hg2+2( ), Na+ ( ), y Mg2+ ( ) en mol/L

Recuadro 2: Dureza de óxidos minerales de cationes “duros”

Bromellita

Crisoberilo

Espinela

PericlasaCorindón Cuarzo

Cal

Perovskita

RutiloShcherbinaíta

Srilankita

Baddeleyita Molibdita

Tantita

Minerales de un solo

catión

Cuarzo

Minerales de dos

cationes

Perovskita

Dureza (Escala

de Mohs)

* Una fase sintética de TiO2 (no rutilo) es el óxido de mayor dureza conocido Torianita

Recuadro 3: Comportamiento de cationes “duros” a alta temperatura

Catión (delineado para cationes intermedios)

T de fusión (K) para óxidos de

cationes “duros”

Los minerales se muestran con círculos cuyo diámetro es

representativo de la proporción de cada catión

Minerales de acuerdo a la temperatura típica de cristalización*:

CromitaForsteritaAnortitaAugitaEnstatitaHornblendaIlmenitaMagnetitaApatitoTitanita (esfena)CircónBiotitaFeldespato-KAlbitaCuarzo

Min

eral

es ri

cos

en

Mg-

Al-F

e-C

a-Ti

Min

eral

es ri

cos

en

Si-N

a-K

*El orden de cristalización en un magma depende de la presión, de las composiciones del magma y del fluido

Temperatura de fusión (K) de óxidos simples de cationes “duros”Ver también recuadro 6

4+

Recuadro 4: Solubilidad de óxidos minerales de cationes “duros”

Bromellita

PericlasaCorindón Cuarzo

Cal RutiloShcherbinaíta

Baddeleyita Molibdita

Mineral

Log de la actividad del catión en agua destilada a 25 °C

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la TierraL. Bruce Railsback, Department of Geology, University of Georgia, Athens, Georgia, 30602-2501 U.S.A. ([email protected]).

Traducción por: Juan Pablo Bernal, Instituto de Geología, UNAM ([email protected]). Esta tabla fue originalmente publicada por la Geological Society of America en inglés en GEOLOGY, v. 31, p. 737-740, doi: 10.1130/G19542.1 (”An Earth Scientist’s Periodic Table of the Elements and Their Ions”

por L. Bruce Railsback), con apoyo de la United States National Science Foundation, número de contrato 02-03115. La versión 4.7 de la tabla ha sido publicada por la Geological Society of America en inglés dentro de la serie Maps & Charts, MCH092F, doi: 10.1130/2004AESPT, y puede adquirirse a través de la Geological Society of America. Elementos de Tierras Raras (ETR)

(iones “duros” o “tipo A” en estado de oxidación 3+)

Lantánidos ión lantano

ión cerio

ión cerio

ión praseodimio ión neodimio ión samario

ión europio

ión europio(sustituye a Ca2+)

ión gadolinioión terbio

ión disprosioión holmio ión erbio

ión tulioión yterbio

ión lutecioPrometio

No existente en la Tierra de manera

natural

KAl2S 3O8iAl2S O5iZrS O4i

Na3P 4O

AlP 4O

C aS 4O

Na2S 4O

d)( d)(

d)(

d)(

2345

FeFe FeFe

CrCr

z

d)

Figura 3. La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra. Versión en español en alta resolución disponible en <http://www.gly.uga.edu/railsback/PT.html#AvailabilitySpanish> y como suplemento electrónico (25-1-02) a este artículo en < http://satori.geociencias.unam.mx/RMCG.htm>.

Page 7: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra 241

nerales, aguas naturales (dulce y/o marina), suelos, sedi-mentos, rocas ígneas, el manto, o la atmósfera, o si tienen un rol preponderante como micronutrientes. Al observar la tabla (Figura 3) es evidente que los diferentes símbolos se agrupan de acuerdo a los contornos de potencial iónico, una tendencia no evidente en la tabla periódica convencional. Por ejemplo, muchos iones con valores de 3 <ϕ <10 tienden a formar óxidos minerales, se encuentran enriquecidos en suelos y nódulos marinos de Fe-Mn, forman parte de fases minerales con mayor punto de fusión, y se encuentran me-nos empobrecidos en el manto. Igualmente, dichos iones forman los óxidos con mayor dureza, menor solubilidad y menor compresibilidad (Figura 3, recuadros 1-4 y 6). Estas tendencias son evidenciadas en la nueva tabla periódica por medio de los contornos de equipotenciales de color anaranjado.

Por otra parte, aquellos cationes con ϕ <4 forman fl uoruros minerales y son componentes mayoritarios en agua de ríos y océanos, así mismo en este grupo se inclu-yen iones que son nutrientes fundamentales para algunos seres vivos. De manera similar, aquellos cationes con ϕ >8, son igualmente abundantes en agua de ríos y marina, y son nutrientes importantes para plantas. Sin embargo, a diferencia de aquellas especies con bajo potencial iónico, estos cationes se encuentran formando parte de oxianiones, tales como sulfatos (S6+ en SO4

2-), fosfatos (P5+ en PO43-),

nitratos (N5+ en NO3-) y arsenatos (As5+ en AsO3

-), entre otros. Ambas tendencias pueden ser identifi cadas en la tabla por contornos equipotenciales de color azul.

Los contornos equipotenciales se extienden hacia la zona de los cationes intermedios, comprendida por los iones de los elementos de transición. La parte superior de esta sección está comprendida por cationes que poseen valores de ϕ entre 3 y 8, e igualmente se encuentran enriquecidos en suelos, forman óxidos minerales, y son parte fundamental de fases minerales ígneas formadas en las etapas tempranas

de cristalización. En la parte central de esta sección se en-cuentran los ácidos blandos por excelencia, caracterizados por poseer valores bajos de ϕ. Entre ellos se encuentran los iones de los principales metales de acuñación (Cu, Ag, y Au) denotados por diamantes amarillos que indican su preferen-cia para formar sulfuros, bromuros y yoduros minerales.

Con excepción de los gases nobles, la única sección de la Tabla Periódica de los Elementos y sus Iones donde no se incluyen los contornos equipotenciales corresponde a los elementos en forma nativa, y que incluye en su mayoría a los metales acuñables, así como a aquellos componentes de la atmósfera. La posición relativa de estos elementos se mantiene idéntica a la de la tabla periódica convencional. Aun así, es posible trazar contornos agrupando las preferen-cias de aleación para cada elemento. Por ejemplo, aquellos elementos que forman aleaciones con Os forman un grupo discreto en la tabla, mientras que aquellos que se alían con Fe forman un grupo más grande que se traslapa con aquellos que forman aleaciones con Cu y Au.

En la parte derecha de la Tabla (Figura 3) se presentan los aniones, que comprenden tanto a las bases duras como a las blandas. Los contornos equipotenciales para los aniones son similares a aquellos de los ácidos duros, sin embargo, a diferencia de los cationes, no se observan variaciones drásticas de ϕ, que varía entre -1/2 y -2; debido a que el aumento en la carga del anión conlleva, a su vez, un aumento en el radio iónico. Con respecto al comportamiento como solutos, la simbología permite observar que los aniones con valores más negativos de ϕ (bases duras), en la parte alta de la tabla periódica, presentan propiedades similares a sus análogos ácidos. Por el contrario, la parte baja de la tabla presenta a los aniones blandos: aquellos con valores de ϕ más cercanos a cero, y que preferentemente se coordinan con cationes blandos, formando sulfuros, bromuros, yoduros y teluros con ácidos blandos como Ag+ y Au+. Por otra parte, de derecha a izquierda, o de F- y Cl- hasta C4- y O2- es la

Iones menos empobrecidos del manto en la formación de la corteza

Iones enriquecidos en CAIs (inclusiones ricas en Ca y Al en meteoritas) con respecto a la composición del sistema solarIones compatibles con primeras fases en cristalizar en rocas ígneas

Iones compatibles con últimas fases cristalinas en rocas ígneas debido a su gran tamaño (pincipalmente LILE)

Los 8 solutos más abundantes en agua marina

9° a 16° solutos más abundantes 17° a 22° solutos más abundantes

Soluto más abundante en agua de río (HCO3-)

2° a 8° solutos más abundantes en agua de río

Solutos que pueden ser nutrientes limitantes en los océanos

Solutos que son macronutrientespara plantas terrestres

Solutos que son micronutrientespara plantas terrestres

Iones escenciales para la nutrición de algunos vertebrados (minerales escenciales)

Iones que pueden ser limitantes para el crecimiento de bacterias

Iones comúnmente enriquecidos en suelos residuales o sedimentos (símbolo pequeño indica menor certeza)Iones en nódulos ferromangánicos procedentes del fondo del océano, enriquecidos con respecto al agua de mar

Cationes que forman minerales de fluoruros simples

Cationes que forman minerales de óxidos simples

Cationes que forman minerales de sulfuros simples

Cationes que forman minerales de bromuros o ioduros simplesCationes que forman minerales con base en un oxianión (p.ej: S6+ en sulfatos, A5+ en arsenatos)

Aniones que forman minerales con K+ y Na+

Aniones que forman minerales con Mg2+

Aniones que forman minerales con Al3+, Ti4+ y Zr4+

Aniones que forman minerales con Si4+

Aniones que forman minerales Cu+

Aniones que forman minerales Ag+

Aniones que forman minerales Au+

Figura 4. Detalle de la simbología utilizada en la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra.

Page 8: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Bernal y Raislback242

MoO42-, y solamente liberarán al oxígeno en presencia de

una base más dura (como F-) o al ser reducidos. La existencia de óxidos minerales puede ser explicada

de manera similar a la especiación de los cationes en medio acuoso (Figura 3, recuadro 7). Cationes con valores de ϕ bajos forman enlaces débiles con el ión óxido, por lo que no forman óxidos minerales, ni son retenidos en los suelos como óxidos o hidróxidos; estos cationes se disuelven fácilmente en agua, lo que los ha convertido en nutrientes importantes para plantas y algunos otros seres vivos (p. ej., Na+, K+). La incapacidad que tienen estos iones para formar enlaces estables con el ión O2- también implica que estos cationes sólo son incorporados en las fases minerales de más baja temperatura (biotita, muscovita, feldespato-K) y, por lo tanto, en las últimas etapas de cristalización. Por otra parte, aquellos cationes con valores altos de ϕ (p. ej., P5+, N5+, S6+, entre otros) forman enlaces extremadamente estables con el ión óxido; sin embargo, la alta densidad de carga posi-tiva del catión central ejerce atracción hacia los electrones del ión O2-, polarizando efectivamente la distribución de electrones en el enlace catión-oxígeno hacia el centro del oxanión, evitando que éste pueda formar enlaces con otro catión a través del oxígeno y formar la base de una posible estructura del óxido mineral correspondiente. Lo anterior tiene como resultado no sólo la ausencia de óxidos minerales de este tipo de cationes, sino también que estos iones sean muy solubles en agua y, por lo tanto, abundantes en aguas naturales (dulces y/o marinas), y que sean considerados como elementos incompatibles con fases minerales ígneas. Finalmente, aquellos cationes con ϕ intermedia, 4 <ϕ <10 (p. ej., Si4+, Al3+), forman enlaces con oxígeno relativamente fuertes, sin embargo, la densidad de carga en el centro del ión no es lo sufi cientemente alta como para evitar que el oxígeno pueda formar enlaces con otros cationes. De esta manera, estos iones pueden formar óxidos e hidróxidos minerales, e incorporarse a fases minerales ígneas de alta temperatura que se forman en las etapas tempranas de la cristalización magmática. Su estabilidad como óxidos y/o hidróxidos les confi ere poca solubilidad en agua y, por ende, son relativamente poco abundantes en aguas naturales.

El comportamiento de los iones con valores diferentes de ϕ en solución acuosa tiene también implicaciones en estudios de petrología ígnea. En particular permite expli-car porqué los basaltos generados en zonas de subducción poseen composiciones de elementos traza muy diferentes a las de aquellos generados en otros ambientes tectónicos. Los basaltos de arco, por ejemplo, muestran enriquecimientos en elementos LIL (bajo ϕ), pero concentraciones de elementos HFS (muy alto ϕ) similares a las observadas en basaltos de dorsales oceánicas (N-MORB Figura 6). Tales anomalías son generalmente interpretadas como el resultado de proce-sos metasomáticos en la cuña del manto, originados por la deshidratación de diversos minerales de la corteza oceánica y sedimentos subducidos (p.ej., fi losilicatos y anfíboles) (Tatsumi y Kogiso, 2003). De esta manera los elementos LIL, al ser solubles en agua, pueden ser transportados ha-

transición de aniones que forman minerales con cationes duros (por ejemplo K+ y Na+) hasta aquellos que forman minerales con cationes duros con valores de ϕ extremos (p. ej., Al3+ y Si4+).

LA INTERACCIÓN CATIÓN-O2-

La diferencia entre los cationes de bajo y alto ϕ puede ilustrarse a partir de la interacción de éstos con el ión O2-. Mientras que los iones de bajo ϕ sólo ejercen cierta atrac-ción electrostática sobre el anión óxido, aquellos cationes con alto ϕ concentran tal cantidad de carga positiva que forman enlaces con el oxígeno de alto carácter covalente, difíciles de romper. Lo anterior adquiere mayor importancia al considerar que el oxígeno es el elemento más abundante en la Tierra (McDonough y Sun, 1995), e implica que la sola interacción catión-oxígeno es el principal regulador de los procesos de diferenciación geoquímica.

Para ilustrar lo anterior, la interacción entre iones con diferente valor de ϕ y moléculas de H2O resulta interesante. De manera general, ϕ se incrementa gradualmente hacia la derecha en cualquier fi la de la parte izquierda de la tabla. En una solución acuosa, los iones con valores menores de ϕ (p. ej., Na+, K+) solamente logran inclinar ligeramente el dipolo de las moléculas de H2O hacia el centro de carga positiva (Figura 5a) (Carrillo-Tripp et al., 2003), mientras que cationes con valores de ϕ ligeramente mayores (como Mg2+ y Ca2+) logran orientar de manera efectiva el dipolo de las moléculas de H2O alrededor de ellos (Figura 5b) (Bernal-Uruchurtu y Ortega-Blake, 1995). Aquellos iones con valores mayores de ϕ (p. ej., Al3+) inducen tal atracción al oxígeno de las moléculas del agua, que generan de manera casi espontánea reacciones de hidrólisis del tipo:

Al3+ + 2nH2O ⇔ Al(OH)n3-n + nH3O+ (3)

n = 1 – 5

de tal manera que solamente es posible encontrar aluminio disuelto no ligado a oxígeno en ambientes muy ácidos, tales como el drenaje ácido procedente de desechos mine-ros (p. ej., Cidu et al., 1997), mientras que en ambientes menos ácidos o neutros el aluminio se encontrará formando complejos tipo hidróxido, descritos como productos en la Ecuación 3 (Figura 5c) (Hiradate, 2004). Iones con mayor potencial iónico (p. ej., C4+, Si4+) no existen como tal en so-lución acuosa, sino que se encuentran siempre coordinados por el ión óxido o hidróxido, por ejemplo CO3

2- y Si(OH)4 (Figura 5d) (este último comúnmente representado como H4SiO4, Krauskopf y Bird, 1995). Finalmente, la interacción entre cationes con valores extremos de ϕ (p. ej., N5+, S6+) con oxígeno tiene como resultado enlaces altamente cova-lentes, formando oxianiones muy estables, como NO3

- y SO4

2- (Figura 5e) (Cotton y Wilkinson, 1988). Los cationes de átomos muy pesados con alta carga (p. ej., U6+, W6+ y Mo6+) también formarán oxianiones como UO2

+2, WO42- o

Page 9: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra 243

z/r = ϕ

1/0.95 = 1.05

2/0.65 = 3.07

3/0.5 = 6.0

4/0.41 = 9.75

5/0.11 = 45

a) Na++ H2O

b) Mg2+(H2O)6

c) AlOH2+ + H3O+

d) Si(OH)4

e) NO3-

cia la cuña del manto por los fl uidos generados durante la subducción, mientras que la baja solubilidad en agua de los HFS (debido a su alto valor de ϕ) evita su movilización, por lo que es común encontrarlos en fases minerales presentes en la placa metamorfi zada (p. ej., Tiepolo et al., 2000; Scambelluri et al., 2001). Las disoluciones generadas en estos procesos, enriquecidas en LIL y empobrecidas en HFS,

pueden interactuar con la cuña del manto (Murphy, 2007) y alterar la abundancia de elementos LIL en los magmas máfi cos generados en zonas de arco, dando como resultado perfi les de elementos similares al que se muestra en la Figura 6, donde los elementos LIL se encuentran enriquecidos con respecto a N-MORB, al tiempo que los HFS se encuentran en proporciones similares a los N-MORB.

Figura 5 Modelo conceptual para ilustrar la interacción entre cationes con potencial iónico diferente (ϕ) con moléculas de agua y/o iones óxido. La representación de los iones no se encuentra escalada a su radio iónico. a: Moléculas de agua parcialmente inclinadas hacia el catión Na. b: Ión Mg2+ rodeado de moléculas de agua orientadas hacia el ión. c: Ión AlOH2+ y H3O+, productos de la hidrólisis del H2O por el ión Al3+ de acuerdo a la Ecuación 3. d: Estructura del H4SiO4, un ácido débil, que no puede liberar iones OH-, pero puede perder dos H+ en medios muy alcalinos. e: Ión NO3

-, en el cual la atracción generada por el nitrógeno hacia los átomos de oxígeno, impide que se estos últimos formen enlaces estables con H+.

Page 10: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Bernal y Raislback244

Cs Rb Ba Th U Nb Ta K La Ce Pb Sr P Nd Zr Hf Sm Eu Ti Y Yb Lu

1

10

100

Mue

stra

/ N

-MO

RB

LILE

HFSE

A pesar de que la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra clasifi ca a las diferentes especies de acuerdo con su estado de oxidación, es nece-sario recalcar que esta representación no necesariamente implica que todos los iones participarán en los procesos de diferenciación geoquímica como iones libres. Esto es parti-cularmente cierto para los cationes con alto ϕ, los cuales se encontrarán en la mayoría de los casos unidos a iones óxido y/o hidróxido. De manera general, no es posible encontrar cationes con estado de oxidación >3+ que no estén unidos a una base dura, típicamente O2- y/o F- y/o OH- (Cotton y Wilkinson, 1988). La universalidad de este principio es sorprendente, pues tal comportamiento se observa tanto en la diferenciación pegmatítica (Ringwood, 1955b), como en aguas naturales a temperatura ambiente (Brookins, 1988).

VENTAJAS Y LIMITACIONES

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra es una herramienta que permite comprender con mayor facilidad el comportamiento de los diferentes elementos y sus iones bajo diversas condiciones de diferenciación. La clasifi cación que aquí se presenta no busca aportar conocimientos ni teorías nuevas sobre el comportamiento de los elementos, sin embargo, permite al usuario visualizarlos de una manera más sencilla y rápida.

Por ejemplo, previamente se mencionó que el Cu+ no sus-tituye al Na+ en los feldespatos debido a que estas especies son ácidos blando y duro, respectivamente. Aunque dicho comportamiento se encuentra previsto en los principios de sustitución de Goldschmidt, en particular por el que esta-blece que la sustitución puede ser nula o limitada a medida que se incrementa la diferencia de electronegatividad de los iones en competencia (Faure, 1991), resulta más rápido, sencillo e ilustrativo identifi car dicho comportamiento por la posición de los respectivos iones en la tabla, ya que de otra manera es necesario contar con datos de electronega-tividad para cada ión y elemento. Adicionalmente, el uso de la Tabla Periódica de los Elementos y sus Iones no sólo permite evaluar la factibilidad de una posible sustitución isomórfi ca rápidamente, sino que también permite extra-polar dicho comportamiento a elementos y iones vecinos a través del uso de los contornos equipotenciales.

El uso de ϕ como factor de clasifi cación y los con-tornos equipotenciales deben ser utilizados con precaución. Lo anterior es debido a que el radio iónico y, por lo tanto ϕ, (Ecuación 2) de cada ion es dependiente del número de coordinación (NC). Aunque los contornos equipotenciales en la tabla han sido trazados utilizando el NC más común, hay algunos elementos que pueden adoptar distintos NC, siendo el Al3+, probablemente, el caso más notable. Este ión puede ocupar de manera indistinta sitos tetraédricos (NC=4) y octaédricos (NC=6) en la estructura de diversos minera-

Figura 6. Distribución de elementos traza en basaltos de arco provenientes del Cinturón Volcánico Trans-Mexicano (Morán-Zenteno, comunicación per-sonal) normalizados contra N-MORB (Sun y McDonough, 1989). Nótese como los elementos LIL se encuentran marcadamente enriquecidos, mientras que los elementos HFS se encuentran en proporciones similares a N-MORB. El enriquecimiento aparente del Th es resultado de la baja concentración de este elemento tanto en la muestra como en N-MORB, y de la incertidumbre asociada a ambos valores. Un análisis de propagación de errores demuestra que Thmuestra/ThN-MORB = 4.87 ± 4.15.

Page 11: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra 245

les, por ejemplo las arcillas (Moore y Reynolds, 1997), lo que implica que dentro de la estructura de un mineral, los iones Al3+ pueden presentar dos radios iónicos diferentes (0.39 y 0.535 Å, respectivamente; Shannon, 1976), y por ende valores distintos de ϕ (7.69 y 5.60, respectivamente), dependiendo del sitio en la estructura que ocupen. Aunque lo anterior podría sugerir comportamientos diferentes para ambos tipos de Al3+, los valores de ϕ se encuentran dentro del rango delimitado por los dos contornos equipotenciales de color naranja en la Figura 3 (z/r =4 y z/r = 8), por lo que considerar al NC = 6 como el más común para el Al3+, tan sólo resultaría en un ligero desplazamiento del contorno equipotencial z/r = 8 hacia el centro de la tabla, más no indicaría un comportamiento geoquímico diferente para el Al3+ al que se presenta en la tabla. Conclusiones similares pueden obtenerse de otros iones con comportamiento similar al Al3+, tales como Fe3+ y Mg2+, entre otros.

CONCLUSIONES

La clasifi cación de los iones de acuerdo a sus posibles estados de oxidación en la naturaleza evidencia tendencias que permiten sistematizar el comportamiento de los ele-mentos y sus iones ante diversos procesos de diferenciación geoquímica. Dichas tendencias habían sido ya evidenciadas de manera semiempírica en la clasifi cación de los elementos de Victor Goldschmidt (Goldschmidt, 1937; Goldschmidt y Muir, 1954) y de otros autores (Cartledge, 1928a; Cartledge, 1928b; Ringwood, 1955a). Asimismo, la clasifi cación evi-dencia que las dos principales propiedades intrínsecas de los iones, potencial iónico y polarizabilidad, son los factores moduladores de los principales procesos de diferenciación geoquímica elemental. Cabe mencionar que aunque dichos términos se presentan de una manera simplifi cada, en rea-lidad corresponden a propiedades complejas de los iones. El lector interesado en profundizar en dichos términos, así como en la teoría de ácidos y bases duros y blandos, debe referirse a la las referencias originales (Pearson, 1963), a la literatura química especializada (p. ej., Cotton y Wilkinson, 1988; Huheey, 1993), así como a revisiones recientes (Ayers et al., 2006; Ayers, 2007).

La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra no pretende ser una sustitución de la tabla periódica tradicional; ambas son complementarias al presentar y evidenciar información que no está presente en la contraparte. Es de vital importancia, sin embargo, conocer y entender la tabla periódica tradicional, para po-der valorar muchas de las ventajas que la clasifi cación de los elementos y sus iones propuesta por Railsback (2003) ofrece. La generalización y sistematización de los procesos de diferenciación geoquímica presentados por Railsback (2003) hace de La Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra una herramienta de vital importancia para los estudiosos de las Ciencias de la Tierra. Finalmente, el lector es referido a los trabajos originales

(Railsback, 2003; Railsback, 2005) con el fi n de ampliar la comprensión de la tabla a partir de los ejemplos y aplica-ciones ahí presentes.

AGRADECIMIENTOS

La versión original de la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra fue fi nan-ciada por la United States National Science Foundation, número de contrato 02-03115. Los autores agradecen a M.I. Bernal-Uruchurtu por la valiosa ayuda en la preparación de la Figura 5. Asimismo agradecen a Dara Salcedo, Arturo Gómez Tuena, Dante Morán por la revisión y comentarios sobre versiones preliminares del manuscrito. La revisión ex-haustiva de la Figura 3 por la Dra. Teresa Orozco, así como sus comentarios y los de un revisor anónimo resultaron en mejoras signifi cativas del presente documento.

APÉNDICE A. SUPLEMENTO ELECTRÓNICO

Una versión en alta resolución de la Tabla Periódica de los Elementos y sus Iones para Ciencias de la Tierra está disponible en el sitio web de la revista <http://satori.geociencias.unam.mx/>, en la tabla de contenido de este número (suplemento electrónico 25-2-02).

REFERENCIAS

Abbott, R.N., 1994, Electronic polarizability of oxygen and various cat-ions in selected triclinic minerals; point-dipole theory: Canadian Mineralogist, 32(4), 909-918.

Albarede, F., 2003, Geochemistry, an Introduction: Cambridge, UK, Cambridge University Press., 248 pp.

Auboiroux, M., Melou, F., Bergaya, F., Touray, J.C., 1998, Hard and soft acid-base model applied to bivalent cation selectivity on a 2:1 clay mineral: Clays & Clay Minerals, 46(5), 546-555.

Ayers, P.W., 2007, The physical basis of the hard/soft acid/base principle: Faraday Discussions, 135, 161-190.

Ayers, P.W., Parr, R.G., Pearson, R.G., 2006, Elucidating the hard/soft acid/base principle: A perspective based on half-reactions: Journal of Chemical Physics, 124(19), art. no. 194107.

Bernal-Uruchurtu, M.I., Ortega-Blake, I., 1995, A refi ned Monte Carlo study of Ca2+ and Mg2+ hydration: Journal of Chemical Physics, 103, 1588-1598.

Brookins, D.G., 1988, Eh-pH Diagrams for Geochemistry: Berlin, Springer, 179 pp.

Carrillo-Tripp, M., Saint-Martin, H., Ortega-Blake, I., 2003, A compara-tive study of the hydration of Na+ and K+ with refi ned polariz-able model potentials: Journal of Chemical Physics, 118(15), 7062-7073.

Cartledge, G.H., 1928a, Studies on the periodic system. I. The ionic po-tential as a periodic function: Journal of the American Chemical Society, 50(11), 2855-2863.

Cartledge, G.H., 1928b, Studies on the periodic system. II. The ionic po-tential and related properties: Journal of the American Chemical Society, 50(11), 2863-2872.

Cidu, R., Caboi, R., Fanfani, L., Frau, F., 1997, Acid Drainage from Sulfi des Hosting Gold Mineralization (Furtei, Sardinia): Environmental Geology, 30(3-4), 231-237.

Page 12: la Tabla Periódica de los Elementos y sus Iones para ...satori.geociencias.unam.mx/25-2/(04)Bernal.pdf · cationes metálicos con alta carga y radio iónico pequeño ... de manera

Bernal y Raislback246

Cotton, F.A. y Wilkinson, G., 1988, Advanced Inorganic Chemistry: New York, Wiley, xvii, 1455 pp.

Cruz-Garritz, D., Chamizo, J.A., Garritz, A., 1991, Estructura Atómica. Un enfoque químico: Addison-Wesley Iberoamericana, S.A.

Faure, G., 1991. Principles and applications of inorganic geochemistry. Macmillan Pub. Co, New York, Toronto, xiii, 626 pp.

Goldschmidt, V.M., 1937, The principles of distribution of chemical ele-ments in minerals and rocks. The seventh Hugo Müller Lecture delivered before the Chemical Society on March 17th, 1937: Journal of the Chemical Society, 655-673.

Goldschmidt, V.M., Muir, A., 1954, Geochemistry: Oxford, Clarendon Press, International Series of Monographs on Physics, 730 pp.

Hiradate, S., 2004, Speciation of aluminum in soil environments: Soil Science & Plant Nutrition, 50(3), 303-314.

Huheey, J.E., 1993. Inorganic Chemistry: Principles of structure and reactivity: New York, NY, Harper Collins College Publishers, 964 pp.

Krauskopf, K.B., Bird, D.K., 1995, Introduction to Geochemistry: New York, McGraw-Hill, 647 pp.

Lasaga, A.C., Cygan, R.T., 1982, Electronic and ionic polarizabilities of silicate minerals: American Mineralogist, 67, 328-334.

McDonough, W.F., Sun, S.S., 1995, The Composition of the Earth: Chemical Geology, 120(3-4), 223-253.

Mendelejeff, D., 1869, Ueber die beziehungen der eigenschaften zu den atomgewichten der elemente: Zeitscrift für Chemie, 12, 405-406.

Moore, D.M., Reynolds, R.C., 1997, X-Ray diffraction and the identifi ca-tion and analysis of clay minerals: Oxford [England], New York, Oxford University Press, 378 pp.

Murphy, J.B., 2007, Igneous Rock Associations, 8. Arc Magmatism, II: Geochemical and Isotopic Characteristics: Geoscience Canada, 34(1), 1-29.

Parr, R.G., Pearson, R.G., 1983, Absolute hardness: companion parameter to absolute electronegativity: Journal of the American Chemical Society, 105(26), 7512-7516.

Pearson, R.G., 1963, Hard and soft acids and bases: Journal of the American Chemical Society, 85(22), 3533-3539.

Pearson, R.G., 1995, The HSAB Principle - More Quantitative Aspects: Inorganica Chimica Acta, 240(1-2), 93-98.

Railsback, L.B., 2003, An Earth scientist’s periodic table of the elements and their ions: Geology, 31(9), 737-740.

Railsback, L.B., 2005, A synthesis of systematic mineralogy: American Mineralogist, 90(7), 1033-1041.

Ringwood, A.E., 1955a, The principles governing trace element distribu-tion during magmatic crystallization Part I: The infl uence of electronegativity: Geochimica et Cosmochimica Acta, 7(3-4), 189-202.

Ringwood, A.E., 1955b, The principles governing trace-element behaviour during magmatic crystallization: Part II. The role of complex for-mation: Geochimica et Cosmochimica Acta, 7(5-6), 242-254.

Scambelluri, M., Rampone, E., Piccardo, G.B., 2001, Fluid and element cycling in subducted serpentinite: A trace-element study of the Erro-Tobbio high-pressure ultramafi tes (Western alps, NW Italy): Journal of Petrology, 42(1), 55-67.

Shannon, R.D., 1976, Revised effective ionic radii and systematic stud-ies of interatomic distances in halides and chalcogenides: Acta Crystallographica, Section A. Foundations of Crystallography, A32(5), 751-767.

Sun, S.S., McDonough, W.F., 1989, Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and pro-cesses, en Saunders, A.D., Norry, M.J. (eds.), Magmatism in the Ocean Basins: London, Geological Society Special Publication, 313-345.

Tatsumi, Y., Kogiso, T., 2003, The subduction factory: its role in the evolution of the Earth’s crust and mantle, en Larter, R.D., Leat, P.T. (eds.), Intra-Oceanic Subduction Systems: tectonic and magmatic processes: London, Geological Society Special Publication, 55-80.

Tiepolo, M., Vannucci, R., Oberti, R., Foley, S., Bottazzi, P., Zanetti, A., 2000, Nb and Ta incorporation and fractionation in titanian pargasite and kaersutite: crystal-chemical constraints and impli-cations for natural systems: Earth and Planetary Science Letters, 176(2), 185-201.

Tomkins, A.G., Mavrogenes, J.A., 2001, Redistribution of gold within arsenopyrite and lollingite during pro- and retrograde meta-morphism: Application to timing of mineralization: Economic Geology and the Bulletin of the Society of Economic Geologists, 96(3), 525-534.

Yamada, S., Tanaka, M., 1975, Softness of some metal ions: Journal of Inorganic Nuclear Chemistry, 37, 587-589.

Manuscrito recibido: Septiembre 27, 2007Manuscrito corregido recibido: Marzo 7, 2008Manuscrito aceptado: Marzo 11, 2008