20
Lambdaanduri saladus

Lambdaandurite tehniline käsiraamat

Embed Size (px)

DESCRIPTION

Lambdaandurid NGK/NTK Sportautodele, mootorratastele jne. Diagnostilised nõuanded töökodadele. Müügiinfo

Citation preview

Page 1: Lambdaandurite tehniline käsiraamat

Lambdaanduri saladus

Page 2: Lambdaandurite tehniline käsiraamat

Lambdaandurid hoiavad õhu puhta…

Lambdaandur – asendamatu abivahend katalüsaatorile Kütuste põlemisel tekib mitmeid suhteliselt kahjutuid ühendeid nagu vesi, süsinikdioksiid ja lämmastik, aga ka mitmeid ohtlikke saasteaineid. Katalüsaatori ülesandeks on neid heitgaase vähendada. Bensiinimootoriga uutesse autodesse on neutralisaatoreid paigaldatud alates 1980ndate lõpust, kusjuures koos iga katalüsaatoriga on paigaldatud vähemalt üks lambdaandur. Tegelikult optimeerib see andur töötingimusi katalüsaatori jaoks. Poliitikud ja tööstusharu on teinud aastaid tööd sõidukite kahjulike heitgaaside vähendamiseks. Heitgaase kontrollivad kohustuslikud määrused on muutunud järkjärgult rangemaks: Just hiljuti otsustas Euroopa Parlament taas vähendada autode kahjulike heitgaaside piirmäärasid. Uus Euro 5 heitgaaside standard jõustus seadusena 1. septembril 2009 (vt jooniseid 1+2). Vahepeal on Euroopa Liit juba teavitanud autotööstust Euro 6 standardi (jõustub alates 2014. aastast) kavandatavatest piirmääradest. Vastavust neile piirmääradele ei saa lihtsalt saavutada ilma katalüsaatorita. Euroopas registreeritud 162 miljonist bensiiniautost on 135 miljonit juba varustatud katalüsaatoriga.

Lisaks sellele on juba üha rohkemate mootorrataste standardvarustuses katalüsaator, sest ka nende heitgaasid on nüüd piirmääradega reguleeritud ning neid tuleb testida korrapäraste ajavahemike järel. Katalüsaator ja lambdaandur: puhtama õhu nimel töötav meeskond Katalüsaatorid vähendavad heitgaase rohkem kui 95% võrra. Kuna need vähendavad kolme kahjuliku gaasi, HC, CO ja NOx heitmeid, siis tuntakse neid kolmetoimeliste katalüsaatoritena. Katalüsaatorid on seest kaetud järgmiste väärismetallidega: plaatina, roodium ja pallaadium. Nendel kihtidel toimuvad mitmed keerulised keemilised reaktsioonid: süsinikmonooksiid (CO) ja süsivesinikud (HC) muudetakse veeks (H2O), sellal kui süsinikdioksiid oksüdeeritakse. Lämmastikoksiidid (NOx) redutseeritakse lämmastikuks (N2), hapnikuks (O2) ja süsinikdioksiidiks (CO2). Lambdaandurid tagavad nende reaktsioonide toimumise optimeeritud tingimustel, sest nende mürgiste gaaside kõige tõhusam muundamine saab toimuda ainult kindla seguvahekorra ehk õhu-kütusesuhte korral. Seega tagavad need peaaegu kogu heitgaaside koguse muundamise.

Kaasaegsetel autodel on tavaliselt vähemalt kaks lambdaandurit: katalüsaatorist ülesvoolu paigaldatud eesmine ehk juhtandur ja pärast katalüsaatorit ehk sellest allavoolu paigaldatud tagumine ehk diagnostikaandur. Need mõõdavad heitgaasi hapnikusisaldust. Mootori juhtsüsteem saab sellele infole tuginedes reguleerida õhu-kütusesuhet.

Joonis 1 Bensiinimootoriga sõidukite heitgaaside piirmäärad

Joonis 2 Diiselmootoriga sõidukite heitgaaside piirmäärad

Uute autode heitgaaside piirmäärad Kehtiv CO HC NOx HC+NOx PM alates (g/km) (g/km) (g/km) (g/km)

Euro I 12/92 2.72 – – 0.97 –

Uute autode heitgaaside piirmäärad Kehtiv CO HC NOx HC+NOx PM alates (g/km) (g/km) (g/km) (g/km)

Euro I 01/92 3.16 – – 1.13 0.14 Euro II 01/96 1.00 0.15 0.55 0.70 0.08

Euro III 01/00 0.64 0.06 0.50 0.56 0.05 Euro IV 01/05 0.50 0.05 0.25 0.30 0.025

Euro II 01/97 2.20 – – 0.50 – Euro III 01/00 2.30 0.20 0.15 – –Euro IV 01/05 1.00 0.10 0.08 – –

Euro VI 09/14 1.00 0.10 0.06 – * otsepritse korral

0.005* Euro VI 09/14 0.50 0.09 0.08 0.17 0.005

2

Euro V 09/09 0.50 0.05 0.18 0.23 0.005Euro V 09/09 1.00 0.10 0.06 – 0.005*

Page 3: Lambdaandurite tehniline käsiraamat

Seire pardadiagnostika abil Et tagada vastavus heitgaaside standarditele sõiduki kogu kasutusea jooksul, võeti kasutusele uus mõõtesüsteemi standard, mida tuntakse pardadiagnostika nime all. Sõidukite heitgaase mõjutavad vead ja probleemid on näha armatuurlaual ning salvestatakse veameerikuga.

Näidiku süttides peaks sõiduki omanik viima auto töökotta. Muud lambdaanduri rakendused Lisaks bensiinimootoritele kasutatakse lambdaandureid ka diiselmootorites. Kaasaegsed diiselsõidukid toetuvad lairiba-lambdaanduritele vastavuse tagamisel kehtivatele heitgaaside piirmääradele.

Seda tüüpi lambdaandurit kasutatakse ka kütuse otsesissepritsega bensiinimootorites.

Joonis 3 Bensiinimootorite heitgaasi koostis

Joonis 4 Diiselmootorite heitgaasi koostis

N2 72.1% N2

73.8%O2 ja väärisgaasid 0,7%

H2O 9% H2O

13.8%

O2 9% CO2

12.3% CO28%

Mürgised gaasid 1,1% Mürgised gaasid 0,2%

Süsinikmonooksiid CO Süsivesinikud HC Lämmastikoksiidid NOx Osakesed PM

Lämmastikoksiidid NOx Süsinikmonooksiid CO Süsivesinikud HC Osakesed PM Vääveldioksiid SO2

3

Page 4: Lambdaandurite tehniline käsiraamat

4

Kõik sõltub õhu-kütusesuhtest

Klaaskiuga isoleeritud juhe Kaitsetoru Kuuskant 22,0 mm

Tihend

M 18x1,5 keere

Heitgaaside hulk suureneb, kui õhu-kütusesuhet ei kontrollita täpselt. Bensiinimootoritel on ideaalseks õhu-kütusesuhteks 14,7 kg õhku 1 kg kütuse kohta. Seda suhet nimetatakse ka stöhhiomeetriliseks seguks. Peaaegu kõik kaasaegsed bensiinimootorid töötavad selle ideaalse õhu-kütusesuhtega. Selle tagamisel mängib lambdaandur otsustavat rolli. Kogu kütus põleb nõuetekohaselt ära ainult selle suhte saavutamisel. Selle suhte korral suudab katalüsaator muundada peaaegu kõik mürgised gaasid, nimelt süsivesinikud (HC), süsinik-monooksiidi (CO) ja lämmastik-oksiidid (NOx) vähem kahjulikeks aineteks. Õhu-kütusesegu tähistatakse ka kreeka tähega lambda, kusjuures λ = 1 tähistab ideaalset suhet.

Kuidas seda saavutada?Mootori juhtseade kontrollib õhu-kütusesegu. See kontrollib kütusesüsteemi, mis tagab põlemisprotsessi täpselt reguleeritud õhu-kütusesuhtega. Õhu-kütusesuhte reguleerimiseks peab mootori juhtseade suutma siiski tuvastada, kas mootorit varustatakse rikka segu (õhupuudus, λ<1) või lahja seguga (liigõhk, λ>1). Seda infot annab lambdaandur. See mõõdab jääkhapnikku heitgaasis ja saadab andurisignaali juhtseadmele, mis omakorda kasutab seda signaali kütusesüsteemi kontrollimiseks.

Lambdaanduriga tuvastamise ja kontrollimise edulugu Eespool kirjeldatud põhimõttele tuginedes on lambdaanduri tehnoloogia tohutult arenenud. Kaasaegsed süsteemid vähendavad drastiliselt kahjulikke heitgaase, optimeerivad kütusekulu ja tagavad katalüsaatori pika kasutusea.

Joonis 1 Stöhhiomeetriline õhu-kütusesegu

Joonis 2 Lambda

1 kg kütust

Rikas segu (õhupuudus)

0,9 Stöhhiomeetriline

segu 1,0

Lahja segu (liigõhk)

1,1

14,7 kg õhku λ

Page 5: Lambdaandurite tehniline käsiraamat

Adapter

Anduri maandusjuht (hall juhe)

Soojendi (valge juhe)

Anduri signaal (must juhe)

NTK lambdaandurid toodi turule 1980ndatel, kusjuures NGK on selles valdkonnas oluline teerajaja. Sellest ajast saadik on kahjulike heitgaaside vähendamisel tehtud tohutuid edusamme ja seda eriti tänu uuenduslike tehnoloogiate arendamisele ja laiaulatuslikele uuringutele. Näiteks praegusel ajal

tagavad lambdaanduris äärmiselt tõhusad keraamilised soojendid selle, et lambdaandurid suudavad hakata tööle ja reageerida kiiremini. Et saavutada täpsemaid mõõtetulemusi vastavuse tagamiseks üha rangematele Euro-

standarditele, tehakse suuri pingutusi keraamiliste komponentide pideval täiustamisel. Lisaks sellele on töötatud välja mitu spetsiaalset anduri tüüpi spetsiifiliste rakenduste tarvis. Nende hulka kuuluvad lairibaandurid ja lambdaandurid, mille elektritakistus varieerub õhu-kütusesuhtest sõltuvalt.

Joonis 3 Lambda aken

Joonis 4 Lambdaanduri tööpõhimõte

Katalüsaatori muundamismäär (%) Et katalüsaator saaks nõuetekohaselt töötada, tuleb õhu-kütusesegu hoida ideaalsel õhu-kütusesuhtel. See saavutatakse lambdaanduriga. See mõõdab pidevalt heitgaasi jääkhapniku kontsentratsiooni. Väljundsignaal saadetakse mootori juhtseadmele, mis seejärel reguleerib õhu-kütusesuhet.

100

Mootori juhtseade Juhtandur

50

Kolmetoimeline katalüsaator 0

0,9 rikas 1,0 stöhhiomeetriline

λ 1,1

lahja Diagnostiline andur Heitgaas

5

HC

CO

NOx

Page 6: Lambdaandurite tehniline käsiraamat

6

Tsirkooniumdioksiidandur (OZAS-S1 diskreetse taseme andur)

Metallist kuuskantkere

Soojendi juhe (valge juhe)

Anduri maandusjuhe (hall juhe) Kaitsetoru

Tsirkooniumdioksiidelement

Anduri signaalijuhe (must juhe) Rõngastihend

Keraamiline hoidik

Leiate kaabli kirjelduse leheküljelt 14.

Tsirkooniumdioksiidandur on tänapäeval enimkasutatud tüüpi andur. See on binaarandur ning tekitab iseloomulikku umbes 0,8 V pingemuutust, kui õhu-kütusesegu muutub lahjast rikkaks.

Anduri elemendi konstruktsioonTsirkooniumdioksiid (ZrO2, tuntud ka tsirkooniumoksiidina) on järgmiste iseloomulike omadustega keraamiline materjal: Alates 300 °C kraadist on see hapniku ioone läbilaskev. Tsirkooniumlambdaanduri element on õõnsa sõrme kujuline. See õõnsus sisaldab välis- ehk võrdlusõhku, sellal kui metalltoruga kaitstud välispinda mõjutab kuum heitgaasivool. Keraamilise elemendi mõlemad küljed on kaetud õhukese poorse plaatinakihiga, mis toimib elektroodina.

Anduri signaali genereerimineKui lambdaandur saavutab oma töötemperatuuri, siis hakkavad hapniku ioonid liikuma läbi selle kere. Kuna välisõhu hapnikukontsentratsioon on umbes 20,8%, siis liiguvad hapniku ioonid anduri seest ümbritseva heitõhu poole (vt joonist 1).

Joonis 1 Tsirkooniumdioksiidanduri tööpõhimõte

Heitgaas Välimine plaatinaelektrood (kokkupuutes heitõhuga)

Anduri element Korpus Võrdlusõhk Plaatina-

elektroodO2 O2 O2 O2

U

Plaatina-elektrood

O2

Väljalasketoru

Pinge (U) on proportsionaalne hapnikukontsentratsiooni suhtes.

Sisemine plaatinaelektrood (kokkupuutes võrdlusõhuga)

Avad kaitsetorus Kaitsetoru

O2 O2 O2

e-

e-

O2-

O2- O2-

O2

O2 O2 O2 O2

Soojendi

Tihend

Poorne keraamiline kiht

Heitgaas

Tsirkooniumelement

Võrdlusõhk

Page 7: Lambdaandurite tehniline käsiraamat

Anduri välisküljel on hapnikukontsentratsioon palju madalam ning ioonid liiguvad selles suunas tasakaalu saavutamiseks. Selle tulemuseks on potentsiaalne erinevus, kuna esineb erinevus elektronide arvus kahel küljel. Selle tulemusel tekib pinge (U) plaatinaelektroodidel, mis edastatakse seejärel mootori juhtseadmele. Signaalid Kui õhu-kütusesegu on lahja, siis on heitõhus umbes 2% jääkhapnikku. Selle tulemuseks on umbes 0,1 V anduri signaal. Kui heitõhus on vähem jääkhapnikku, mis tähendab, et õhu-kütusesegu on rikas, siis hüppab

anduri signaal pingele 0,9 V. Signaal kõigub nende kahe väärtuse vahel sagedusega 1-2 Hz (see tähendab 1-2 korda sekundis). See informeerib mootori juhtseadet pidevalt kõrvalekaldest ideaalsest stöhhiomeetrilisest suhtest ning järelikult säilitab õhu-kütusesuhet λ=1. Hea teada ● Vesi, õli ja kütuseaur võivad

saastada võrdlusõhu ja põhjustada vääraid mõõtetulemusi. NTK on töötanud välja "hingava" anduri struktuuri, mille puhul võrdlusõhk vahetub läbi spetsiaalse membraani. See kaitseb võrdlusõhku saastumise eest ja parandab anduri töökindlust.

● Metallist kaitsetoru kaitseb anduri elementi kondenseerumise ja heitgaasis sisalduvate tahkete osakeste eest. Väljalasketorus olev vesi võib termolöögiga kahjustada kuuma keraamilist elementi.

● Sisseehitatud soojendi tagab, et anduri element saavutab töötemperatuuri kiiresti, nii et heitgaase kontrollitakse rangelt juba auto esimeste sõidumeetrite jooksul. Seda reaktsiooniaega nimetatakse ka anduri töövalmiduse saavutamise ajaks.

Joonis 2 Anduri pinge: amplituud

Joonis 3 Anduri pinge: anduri töövalmiduse saavutamise aeg

Uus andur Defektne andur

V 0.9

V0.9

0.6 0.6

0.3 0.3

0.1

0 0t t

Defektse anduri puhul on pingehüpe väiksem. Seetõttu ei saa õhu-kütusesuhet täpselt mõõta.

Defektsed andurid reageerivad viitega. Mootori juhtseade ei saa vajalikke signaale nõutud aja jooksul.

7

Page 8: Lambdaandurite tehniline käsiraamat

Lairiba-lambdaandur

Kaitsetoru Kuuskantkere Ühendusjuhtmed

Keraamiline elemendi hoidik Silikoontihend

Soojendiga tasapinnaline element

Leiate kaabli kirjelduse leheküljelt 14.

Kuna kasvas nõudmine suurema kütusesäästu ja heitgaaside vähendamise järele, oli vaja teatud mootoreid kontrollida stöhhiomeetrilise seguvahemiku väliselt. Põhiprobleemiks on see, et õhu-kütusesegusid on vaja rikastada külmalt käivitamise ajal ja kui mootor töötab täiskoormusel, kuigi paljud

kaasaegsed mootorid on konstrueeritud töötama lahja seguga kogu tööulatuses. Mõlemat režiimi tuleb vastavalt kontrollida. Sel otstarbel kasutamiseks arendati tööstusharus välja lairibaandurid, mis genereerivad spetsiifilise õhu-kütusesuhte suhtes proportsionaalset väljundsignaali.

Mõõtmispõhimõte Heitgaas siseneb mõõteelementi läbi poorsete difusioonkanalite. Elemendis mõõdetakse elektroodidega hapniku tihedust ning võrreldakse seda stöhhiomeetrilise kontsentratsiooni tihedusega. Selle võrdleva mõõtmise tulemuseks on pumba vool (lp), mis tegelikult püüab viia elemendis hapniku kontsentratsiooni tagasi stöhhiomeetrilise segu kontsentratsioonile.

Joonis 1 Lairibaanduri elemendi diagramm

Joonis 2 Lairibaanduri tasapinnalise elemendi ristlõige

Keraamiline soojendi

(Al2O3)Anduri

element (ZrO2)

SoojendiA A’

Element

Ristlõige A–A’Tuvastus-element Soojendi

Heitgaas Heitgaas Element

Poorne difusioonkanal

Poorne difusioon-kanal

Poorne difusioon-kanal

Ip

Etalon 450 mV

8

Ip element O 2-

Vs element O 2-

Icp

O2 võrdluselement (pumbatud)

Tuvastuselement

Page 9: Lambdaandurite tehniline käsiraamat

Juhtahela jaoks vastab standardne võrdlusväljund stöhhiomeetrilisel suhtel pingele 450 mV. Anduri pumba voolu põhjal määratakse kindlaks lambda väärtus ja edastatakse juhtseadmele. Järelikult on saadud pumba vool proportsionaalne heigaasi jääkhapniku kontsentratsiooni suhtes. Kui tuvastuselementi sisenev heitgaas on stöhhiomeetrilisel tasemel, siis on pumba vool null (hapnikku ei pumbata), kuna hapniku osarõhk mõõteelemendis juba vastab stöhhiomeetrilisele väärtusele ning eespool nimetatud väärtusele 450 mV. Lahja segu puhul on mõõteelemendis liigselt hapnikku,

mille tulemuseks on positiivne pumba vool, sellal kui rikas segu viib negatiivse pumba vooluni. Lairibaandur suudab seega tekitada väljundsignaali, mis on proportsionaalne tegeliku õhu-kütusesuhte suhtes. Stöhhiomeetrilist nagu ka lahjat ja rikast segu tuvastatakse väga täpselt ning õhu-kütusesuhet saab optimeerida, et tagada mootori vastamine kehtestatud rangetele heitgaaside piirmääradele.

Hea teada ● NTK lairibaandurid tulid müügile

1990ndate lõpus. ● Need tagavad kombineeritult

suurepärase täpsuse ja töökindluse koos lühikeste töövalmiduse saavutamise aegadega.

● Lairiba-lambdaandurid ei vaja võrdlusõhku, mistõttu need saab sulgeda hermeetilisse keresse.

● Tänu kompaktsetele anduri elementidele on nende reaktsiooniaeg äärmiselt lühike.

Joonis 3 Väljundsignaal: Vs

Joonis 4 Väljundsignaal: Ip

Joonis 5 ASIC-element (ASIC – rakendusotstarbeline integraallülitus)

1000 (+)

Ip [mA]

Vs [mV] 0

450

(-) 0 rich λ=1 lean rich λ=1 lean

9

Page 10: Lambdaandurite tehniline käsiraamat

Titaandioksiidandur (takistuseandur)

Kandursubstraat

Keraamiline hoidik Anduri signaalijuhe

Tihend

Väline metallkere

Klaasjoode

Titaandioksiidelement

Metallist kuuskantkere

Leiate kaabli kirjelduse leheküljelt 14.

Seda tüüpi lambdaanduri keraamiline anduri element on valmistatud mitmekihilisest titaandioksiidmaterjalist, mida saadakse paksu kihi tehnoloogiat rakendades. Titaandioksiidandurid erinevad nii tsirkooniumdioksiidanduritest kui lairiba-lambdaanduritest ühel põhimõttelisel viisil: nende keraamilise elemendi elektritakistus muutub proportsionaalselt heitgaasi hapnikusisalduse suhtes.

Liigse hapniku (λ>1) korral väheneb titaandioksiidi juhtivus. Kui hapniku kontsentratsioon on ideaalsest tasemest madalam, siis selle juhtivus suureneb. Elektritakistus näitab seega mootori juhtseadmele, kas mootor töötab rikkas või lahjas vahemikus. Kõrgetel temperatuuridel muutub elektritakistus eriti kiiresti. Nende lambdaandurite töötemperatuur jääb seetõttu vahemikku 200-700 °C.

Titaandioksiidlambdaandurite eelised: ● Tugev ja kompaktne

konstruktsioon ● Lühike töövalmiduse

saavutamise aeg ● Võrdlusõhku ei ole vaja kasutada● Kiire soojenemine

töötemperatuurini

Joonis 1 Titaandioksiidanduri tööpõhimõte

R

O2- Plaatina-elektrood

Plaatina-elektrood

Ti 4+

O2-

O2-

Heitgaas

Mida rikkam on heitgaas, seda väiksem on takistus (R).

10

Kaitsetoru

Rõngastihend

Page 11: Lambdaandurite tehniline käsiraamat

NOx-andur

Spetsialist lahjade segude jaoks Tõusvad kütusehinnad nagu ka keskkonnaküsimused jäävad lähitulevikus põhiprobleemideks. Et muuta bensiinimootorid keskkonnasõbralikumaks, keskenduvad tootjad otsesissepritsega bensiinimootoritele, mida saab osalise koormuse puhul käitada lahjas vahemikus. See vähendab kütusekulu 12-20%, ent eeldab NOx-anduri kasutamist.

FunktsioonStratifitseeritud laadimisrežiimis jääb tööpunkt kaugele välja normaalsest lambda aknast. Selles punktis ei suuda katalüsaator täielikult muundada põlemisel tekkivaid lämmastikoksiide. Seetõttu on töötatud välja spetsiaalne NOx akumuleeriv katalüsaator, milles hoitakse ajutiselt lämmastikoksiide. Säilitusvõime ammendumisel käivitub NOx-andur.

See annab mootori juhtseadmele märku, et süsteem tuleb lülitada ümber rikkale talitlusele (λ<1) umbes 2 sekundiks. Rikka segu põletamisel NOx vabastatakse ning redutseeritakse keemiliselt kahjutuks lämmastikuks. Seda protsessi tuntakse regenereerimisfaasina ning seda korratakse lahja talitluse korral umbes iga 60 sekundi järel.

Joonis 1 NOx-anduri tööpõhimõte

Stratifitseeritud laadimistoiming

Lairiba-lambda-andur

Mootori juhtseade

Regenereerimis-toiming

60 s 2 s

Kolmetoimeline katalüsaatorNOx-andur

Diagnostiline andurStratifitseeritud laadimistoiming H20

Co2

N2

O2

NOx-katalüsaator

= HC = CO = NOx

11

Page 12: Lambdaandurite tehniline käsiraamat

Lambdatehnoloogia sportautodes

Paljud juhtivad vormel 1 meeskonnad ei vali ainult NGK küünlaid, vaid otsustavad ka NTK lambdaandurite kasuks.

NTK lambdaandurid on muutunud asendamatuks isegi juhtivatele vormel 1 meeskondadele. See ei ole üllatav, sest NTK lambdaanduritega kontrollitud optimeeritud mootori väljund otsustab tihti selle, kes võidab ja kes jääb viimaseks. Kui iga sekund loeb, siis peab mootor töötama optimaalselt. NTK lambdaandurid ei taga ainult madalaid heitgaase, vaid need tagavad ka efektiivsuse kütuse kasutamisel ja mootori maksimaalse jõudluse.

Sportautode lambdaandurid peavad suutma tulla toime eriti karmidel tingimustel nagu äärmiselt kõrged heitgaasi temperatuurid. Lisaks peavad need suutma taluda kõrgeid vibratsioonitasemeid ja pingeid ning tagama, et need tingimused ei mõjuta mõõtetulemusi. See kehtib ka motospordi tipus võistlevate MotoGP mootorrataste lambdaandurite puhul. NGK ei tarni ainult küünlaid selle kategooria tippmeeskondadele, vaid varustab neid ka täiustatud lambdaanduri tehnoloogiaga.

12

Page 13: Lambdaandurite tehniline käsiraamat

Lambdaandurid mootorratastele

Ka mootorrataste tootjad on kohustatud järgima üha rangemaid heitgaaside standardeid ning peavad tootma üha tõhusamaid mootoreid. Tähelepanu keskpunktis on siiski selgelt heitgaasid, sest peaaegu kõikvärskelt registreeritavad mootorrattad peavad vastama Euro 3 piirmääradele. Seetõttu on mootorrataste tootjad teinud aastaid suuri pingutusi oma toodete heitgaaside vähendamiseks. Üha rohkematel ja rohkematel mootorratastel kuuluvad nüüd katalüsaatorid ja seega ka lambdaandurid standardvarustusse.

Uute mootorite arendamisel on kõik juhtivad mootorrataste tootjad otsustanud NGK toodete kasuks. Nendeks tootjateks, kelle mootorratastel kuuluvad NTK lambdaandurid standardvarustusse on Aprilia, BMW, Ducati, Honda, Kawasaki, KTM, Moto Guzzi, Suzuki ja Triumph. Mudeliga OZAS-S3 töötas NTK tegelikult välja spetsiaalselt mootorratastele konstrueeritud lambdaanduri. See on tõenäoliselt kõige väiksem selline seade maailmas ning see on kujult ja suuruselt küünla sarnane. See saavutab koguni ilma soojendita kiiresti oma töötemperatuuri

ning puudub vajadus välise toite järele, mistõttu on see konstruktsioonilt äärmiselt kompaktne. Genereeritud pingesignaal edastatakse läbi eraldi adapteri. Joonis 3 OZAS S3

Joonis 1 Suuruse võrdlus

Joonis 2 ZFAS-S2

OZAS-S3 ZFAS-S2 OZAS-S1

13

Page 14: Lambdaandurite tehniline käsiraamat

Kaabli kirjeldus Tsirkooniumdioksiidlambdaandur (binaarandur)

Titaandioksiidlambdaandur (takistuseandur)

Lairibaandur NOx-andur

14

kollane => soojenduselement ( - ) sinine => soojenduselement ( + )

valge => Ip I ( + ) roheline => Ip II ( + )

hall => Vs ( + ) must => Ip ( - ), Vs ( - )

kollane => soojenduselement ( - ) sinine => soojenduselement ( + )

valge => Ip ( + ) hall => Vs ( + )

must => Ip ( - ), Vs ( - )

Tüüp II hall => soojenduselement ( + )

valge => soojenduselement ( - ) must => signaal ( - )

kollane => signaal ( + )

Tüüp Ipunane => soojenduselement ( + )

valge => soojenduselement ( - ) must => signaal ( - )

kollane => signaal ( + )

Soojendusega

3 juhet must => signaal

2x valge => soojenduselement

4 juhet must => signaal hall => maandus

2x valge => soojenduselement

Soojenduseta

1 juhe must => signaal

2 juhet must => signaal hall => maandus

Page 15: Lambdaandurite tehniline käsiraamat

Hooldus Kuna lambdaandurid kuluvad ja vananevad mõnevõrra, siis soovitame kontrollida nende talitlust iga 30 000 km läbimise järel ja/või iga heitgaasitesti käigus. Võimalikele talitlushäiretele viitavad: ● mootori ebaühtlane töötamine, ● heitgaaside piirväärtuste ületamine, ● suurenenud bensiinikulu. Probleemide korral kasutamiseks ettenähtud hooldusjuhised ● Liigse vibratsiooni korral => kontrollige paigaldust. ● Mehaaniliste kahjustuste korral => asendage andur.

● Suure kütusekulu korral => kontrollige anduri talitlust. ● Saastunud võrdlusõhu korral => asendage andur. ● Lõdva pistikühenduse korral => kontrollige pistikühendust. Praktilised juhised Ettevaatust! Mitme pistiku konnektor peab sobima kõnealusele sõidukile. Iga sõiduk nõuab spetsiaalset anduri tüüpi – ärge otsige väljapääsu ajutistest lahendustest!

Soojendi testimine Lülitage süüde välja, eemaldage konnektor ja mõõtke kahe valge juhtme (OZA tsirkooniumdioksiidandurid) või valge ja punase juhtme (OTA titaandioksiidandurid) vahelist takistust. Kui takistus on üle 30 Ω , siis asendage lambdaandur. Ettevaatust! Anduri pinge otse mõõtmine võib kahjustada juhtmeid.

Lambdaanduri defektid

Probleem: Kaabel ja adapter on sulanud kokkupuute tõttu heitgaasitorustikuga.

Probleem: Kulunud või katkised juhtmed.

Probleem: Kaablitihend on nihkunud. Vesi võib tungida andurisse. Abinõu: Asendage andur ja

hoolitsege, et kaabel ei ole pingul. Abinõu: Asendage andur ja paigutage kaabel nii, et see ei saa puutuda vastu heitgaasitorustikku.

Abinõu: Asendage andur ja hoolitsege, et kaabel ei ole pingul.

Probleem: Anduri kere on paindunud.

Probleem: Vesi adapteris, kontaktid korrodeerunud.

Probleem: Kaitsetoru avasid katavad süsinikujäägid. Nii võib juhtuda rikka õhu-kütusesegu korral või kui mootori ja klappide kulumine põhjustab liigset õlikulu või kui heitgaasitorustik lekib.

Abinõu: Asendage andur. Abinõu: Asendage andur. Kontrollige anduri ja mootori juhtseadme vahelisi elektriühendusi.

Abinõu: Tuvastage ja kõrvaldage põhjus. Tähelepanu! Andur ei põhjusta liigseid tahma- ja õlijääke kaitsetorul.

15

Page 16: Lambdaandurite tehniline käsiraamat

Diagnostilised nõuanded töökodadeleLambdaandureid saab katsetada mitmel erineval viisil.

Visuaalne kontrollVisuaalne kontroll on esmaseks vahendiks hindamisel, kas lambdaandur on defektne. Enne talitluskatse tegemist kontrollige kõiki ühendusjuhtmeid, adaptereid ja anduri keret nähtavate kahjustuste suhtes (vt lk 15). Testimine heitgaaside kontrollmõõtevahendiga See meetod põhineb standardsel heitgaasitestil. ● Kui mootor on töötemperatuuril,

siis antakse ette värsket õhku. ● Kuna see muudab heitgaasi

koostist, siis muutub heitgaaside kontrollmõõtevahendi näidatud lambda väärtus.

● Sõiduk peab reguleerima segu 60 sekundi jooksul.

● Lisaõhuga varustamise katkestamisel peab süsteemis taastuma esialgne lambda väärtus.

● Ettevaatust! Tänu koormuse täpsele tuvastamisele võivad kaasaegsed mootorid suuta reguleerida segu väärtusele lambda = 1 isegi juhul, kui lambdaandur on defektne.

Testimine multimeetriga Kasutage kõrge impedantsiga multimeetrit. Pinge kiire muutumise tõttu on signaali kõige parem analüüsida analoogseadmega. Madala sisemise impedantsiga multimeetrid võivad häirida anduri signaali, nii et see võib täielikult katkeda.

Pardadiagnostika/Euroopa pardadiagnostika vealogi Pardadiagnostikasüsteemidega autodel tuvastatakse lambdaanduri probleeme automaatselt. Riketest antakse juhile märku armatuurlaual ning need registreeritakse veameerikuga. Spetsialiseerunud töökojas saab veameerikut lugeda läbi tööstusharu standardse liidesepordi, et viga edasi analüüsida ja viimaks kõrvaldada. Pardadiagnostika/Euroopa pardadiagnostika jälgib: ● lambdaanduri talitlust, ● katalüsaatori tõhusust, ● tõrkeid põlemisel. Joonis 1

Binaaranduri väljundsignaal

1.0

0.2

0.9 1.0 1.1Õhu-kütusesuhe

16

Anduri pinge (U) Pinge (V)

Page 17: Lambdaandurite tehniline käsiraamat

Tehke anduri testimiseks nii:● Seadke mõõtepiirkonnaks 1 või 2 V. ● Ühendage multimeeter paralleelselt

signaalijuhtmega (must juhe). ● Pärast mootori käivitamist näitab

multimeeter etalonpinget 0,4 kuni 0,6 V.

● Laske mootoril töötada 2500 pöördel minutis, nii et lambdaandurid saavad ilma soojendita oma töötemperatuuri saavutada. Tühikäigul ei pruugi andurid suuta saavutada vajalikku temperatuuri ja jahtuda maha liiga kiiresti.

● Kui nõuetekohaselt töötav andur saavutab töötemperatuuri, siis hakkab pinge kõikuma vahemikus 0,1 kuni 0,9 V.

Testimine ostsillograafigaTestimine ostsillograafiga on kõikidest meetoditest kõige täpsem. See näitab minimaalset ja maksimaalset pinget, töövalmiduse saavutamiseks kuluvat aega ja sagedust.

Tehke ostsillograafiga testimiseks nii: ● Laske mootoril töötada 2000 pöördel

minutis kuni töötemperatuuri saavutamiseni. Ühendage ostsillograaf signaalijuhtmega ilma andurit mootori juhtseadme küljest lahti ühendamata.

● Seadke mõõtepiirkonnaks 1-5 V ja ajaks 5-10 sekundit (järgige tootja juhiseid). Valige vajadusel signaali automaatne tuvastamine.

● Reguleeriv andur peaks ostsilleerima sagedusega 0,5 kuni 4 Hz vahemikus 0,0 kuni 0,9 V.

Joonis 2 Lairibaanduri väljundsignaal: Vs signaal

Joonis 3 Lairibaanduri väljundsignaal:Ip signaal

Joonis 4 Katalüsaatori seire

1000 (+)

Vs [mV]

Ip [mA] Juhtseade

450 0 Diagnostiline andur Juhtandur

(-) 0 λ=1 lahjaλ=1 rikasrikas lahja

Katalüsaator

17

Page 18: Lambdaandurite tehniline käsiraamat

Müügiinfo Rohkem kui 90% kõikidest turulolevatest sõidukitest on juba varustatud katalüsaatoriga ning seega ka vähemalt ühe lambdaanduriga. Ja see arv suureneb pidevalt. Kuna lambdaandurid peavad taluma tohutut termilist, keemilist ja mehaanilist pinget, siis need ka kuluvad. Vananenud lambdaandurid reageerivad liiga aeglaselt muutustele õhu-kütusesuhtes. Nende kontrollifunktsioon on seetõttu liiga aeglane ning need ei suuda saavutada normaalset pingevahemikku. Sellel on negatiivsed tagajärjed nii auto omanikule kui keskkonnale.

Defektsete lambdaandurite tagajärjeks on suurem kütusekulu ja kahjulikumad heitgaasid. See on nii järgmise ahelreaktsiooni tõttu: ● Kui mootori juhtseadmeni jõuab

ebatäpne anduri signaal või kui andur reageerib liiga aeglaselt, siis lülitub mootor hädarežiimi.

● Komponentide kaitseks ja vajaliku väljundi tagamiseks lisatakse õhu-kütusesegule rohkem kütust.

● Kütusekulu suureneb seetõttu kuni 15% võrra.

● Katalüsaator ei saa töötada optimaalsetel tingimustel. Selle tagajärjel paisatakse õhku rohkem kahjulikke gaase.

NTK saab pakkuda parimat andurit igat tüüpi sõidukitele tänu oma laialdastele kogemustele lambdaandurite arendamisel ja tootmisel. See on võimaldanud firmal saavutada suure turuosa. Lambdaandurite kataloog: kõikehõlmav viitedokument ● Sisaldab rohkem kui 500 erinevat

lambdaanduri mudelit. ● Sisaldab lambdaandureid umbes

5600 sõidukirakenduse jaoks.

● Uus: sisaldab nüüd lambdaandureid ka mootorrataste jaoks.

● Kõik lambdaandurid vastavad autotootjate spetsifikatsioonidele.

● Leiate kiiresti sobiva lambdaanduri peaaegu iga sõiduki jaoks koos rohke tehnilise lisainfoga.

● Adapterite 1:1 mõõtkavas joonised aitavad leida oma vajadustele sobiva anduri.

● NGK laiendab ja värskendab pidevalt oma tootevalikut.

Kasutage ära meie teadmusbaasi! NGK pakub kauplejaile ja töökodadele algallikast saadud kogemusi. Näiteks sisaldab interaktiivne veebisait www.ngk-elearning.de kõikide tähtsate NGK toodete talitluse ja konstruktsiooni üksikasjalikku kirjeldust koos 3D animatsioonide ja diagrammidega. Lisaks leidub suur hulk meie tooteid puudutavaid koolitusmaterjale veebisaidil www.ngk-europe.com.

18

Page 19: Lambdaandurite tehniline käsiraamat

Nr 1 kogu maailmasRahvusvaheline autotööstus märkas juba ammu lambdaandurite tähtsust. Ilma nendeta ei oleks võimalik tagada vastavust üha rangematele heitgaaside standarditele. Autotootjad on seetõttu otsustanud võrreldamatu oskusteabega NTK kasuks.

Firma on tootnud lambdaandureid alates aastast 1982. Aastaks 2007 oli NTK tarninud umbes 400 miljonit lambdaandurit autotootjatele ja järelturule. NTK tooteid soovitavate klientide nimekiri on nagu rahvusvahelise autotööstuse "Kes on kes" kataloog. Järgmiste kaubamärkide autod on hetkel varustatud NTK lambdaanduritega: Aston Martin, Audi, BMW, Chevrolet, Citroen, Daewoo, Daihatsu, DaimlerChrysler, Fiat, Ford,

General Motors, Honda, Hyundai, Isuzu, Jaguar, Kia, Lancia, Mazda, Mitsubishi, Nissan, Opel, Peugeot, Renault, Rover, Seat, Skoda, Subaru, Suzuki, Toyota, TVR, Vauxhall, Volvo ja VW. NGK on pühendunud sellele, et jätkuvalt tagada, et autotootjad leiavad ideaalse lambdaanduri oma mootoritele NGK tootevalikust.

19

Page 20: Lambdaandurite tehniline käsiraamat

NGK SPARK PLUG EUROPE GMBH Harkortstr. 41 D-40880 Ratingen Saksamaa Tootejuht: Oliver Posati Telefon +49(0)2102/974-104 Faks +49(0)2102/974-147 www.ngk-europe.com

Maaletooja AS KG Knutssonwww.kgk.ee