14
Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados, C. 5. Gonzalez, J.-F. 6. Kamp, I. 7. Kluska, J. 8. Lambrechts, M. 9. Maaskant, K. 10. Mathews, G. 11. McClure, M. 12. Mulders, G.

Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Poster Blitz #41. Banzatti, A.2. Birnstiel, T.3. Carmona, A.4. Dougados, C. 5. Gonzalez, J.-F.6. Kamp, I.

7. Kluska, J.8. Lambrechts, M.9. Maaskant, K.10. Mathews, G.11. McClure, M.12. Mulders, G.

Page 2: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Illustration credit: ESO/L. Calçada

EX Lupi from Quiescence to Outburst: Opening a New Window on Chemistry and Dynamics of Volatile Species in Planet-Forming Circumstellar Disks.Presenter: A. Banzatti, Institute of Astronomy, ETH Zurich, Switzerland

Outburst

Quiescence

Models

strong HI , H2 appearorganics disappear OH increases, new lines appear

Page 3: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Observable Signatures of Dust EvolutionT. Birnstiel, S. Andrews, B. Ercolano, H. Klahr

observed gas

observed dust

predicted dust(without cutoff)

also on the poster:

„Can grain growth explain

transitional disks?“

fragmentation

radial drift

effective in inner regions ⇒ MMSN

effective in outer regions, see figure/ r�0.75⌃dust

/ r�1.5⌃dust

⇒⇒

Page 4: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Employing H2 near-IR lines to understand the circumstellar environment of sources with

Spitzer [Ne II] 12.8 micron emission

★ What is circumstellar environment of the sources with Spitzer [Ne II] emission?

★ Ongoing CRIRES R~90000 survey for H2 near-IR emission in sources with the [Ne II] line

★ 8 of 18 objects observed: 4 detections H2 1-0 S(1) line

A. Carmona (Grenoble), M. Audard (Geneva), C. Baldovin-Saavedra (Geneva), M. Güdel (Vienna), J. Bary (Colgate)

disk

low velocity outflow

Simultaneous modeling of gas and dust diagnostics in the circumstellar disk of

HD135344B

A. Carmona (Grenoble), C. Pinte (Grenoble), W.F. Thi (Grenoble), M. Benisty (Grenoble), F. Menard (Grenoble) + GASPS collaboration

A. Carmona et al.: Understanding the circumstellar disk of HD135344B by multiwavelength observations and modeling

Model 33 Model 34 Model 46

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.58E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.76E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 4.47E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

0 2 4 6 8log n

O [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.32E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.33E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.44E-19 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.15E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.46E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 2.81E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

Fig. 1.

5

A. Carmona et al.: Understanding the circumstellar disk of HD135344B by multiwavelength observations and modeling

Model 33 Model 34 Model 46

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.58E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.76E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 4.47E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

0 2 4 6 8log n

O [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.32E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.33E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.44E-19 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.15E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.46E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 2.81E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

Fig. 1.

7

A. Carmona et al.: Understanding the circumstellar disk of HD135344B by multiwavelength observations and modeling

Model 33 Model 34 Model 46

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.58E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.76E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 4.47E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

0 2 4 6 8log n

O [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.32E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.33E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.44E-19 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.15E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.46E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 2.81E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

Fig. 1.

7

[OI] 63μm

A. Carmona et al.: Understanding the circumstellar disk of HD135344B by multiwavelength observations and modeling

Model 33 Model 34 Model 46

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.58E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 6.76E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

0 2 4 6 8log n

O [cm-3]

[OI] 63.18µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 4.47E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

0 2 4 6 8log n

O [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.32E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.33E-19 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 866.96µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.44E-19 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.15E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6log n

CO [cm-3]

CO 4.844µm

10-810-610-410-2100102

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 1.46E-17 W/m2

0.1 1.0 10.0 100.0r [AU]

0.00.2

0.4

0.6

0.8

1.0

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

CO 4.844µm

10-610-410-2100102104

o

oline

ocont

0

20406080

100

0cum

ulat

ive

F line [%

] Fline

= 2.81E-17 W/m2

1 10 100r [AU]

0.00.20.40.60.81.01.2

z/r

-6 -4 -2 0 2 4 6 8log n

CO [cm-3]

Fig. 1.

5

SED

MCFOST ⟷ PRODIMO★ Goal: employ multi-instrument observations of gas and

dust of HD 135344B and constrain its disk structure.

★ Present status: found a model with similar SED, PAH spectrum, and line fluxes for the CO 4.7μm, [OI] 63 μm, and CO 866 μm emission.

★ To be included: near-IR interferometry, imaging, fit to the line profiles and other molecules detected.

CO 866 μm

CO 4.7μm

AU AU

AU

disk + high vel. outflow

Page 5: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Herschel 2012 Symposium C. Dougados.

SINFONI/VLT observations of the DG Tauri microjet

Receding jet

Approaching

jet

Star position

Background colors and red contours: [Fe II] atomic flow

Yellow contours: H2 1-0 S(1) emission

 ★ Continuum

Agra-Amboage, Dougados, Cabrit et al 2011!

Agra-Amboage, Cabrit, Dougados in prep.!

  Dusty atomic flow

  Slow molecular cavity

50 AU

Page 6: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

PLANET'GAPS'IN'THE'DUST'LAYER'OF'3D'PROTOPLANETARY'DISKS'OBSERVABILITY,WITH,ALMA,

ALMA'SIMULATED'IMAGES'HYDRODYNAMIC'SIMULATIONS'OF'PLANET'GAPS'IN'DUSTY'DISKS''

Jean4François,Gonzalez1,,,Christophe,Pinte2,,,Sarah,Maddison3,,,François,Ménard2,,Laure,Fouchet4,,

MCFOST'+'

CASA'

350'µm

'85

0'µm

'1.3'mm'

Page 7: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

TW HyaA dry desert or a steam bath?

What do the different Herschel lines tell us?

=> one model can still fit all line fluxes within a factor two=> need for multi-λ studies to unravel the full gas+dust disk structure=> HCO+ and [FeII] require very gas phase metal abundances below ISM value

I.Kamp, W.-F.Thi, G.Meeus, P.Woitke, I.Pascucci, B.Dent

Basic model from Thi et al. 2010, updated reaction rates, H2O surface chemistry

[Hogerheijde et al. 2012]

PACSPACS

Spitz

er

HIFI

steam bath inside 4 AU?

H2O ro-vib & rotational lines

Page 8: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Observa(ons+and+images+of+Young+Stellar+Objects+at+the+milli9arcsecond+scale:+the+case+of+MWC158+

J.#Kluska,#F.#Malbet,#J.0P.#Berger,#M.#Benisty,#B.#Lazareff,#J.0B.#Lebouquin#Young#Stellar#Objects#&#Milli0arcescond#Imaging##Problem#:##Strong#spectral#dependance#!##Three+methods+are+presented+:+

3.  Parametric#fit#1.  Removing#the#stellar#contribuOon#

2.  Using#the#wavelengths#separately#

λ#

Page 9: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Rapid growth of gas-giant cores

by pebble accretion

Michiel Lambrechts & Anders JohansenLund Observatory

tg ⇡ td ⇡ ⌦�1K

+

�tH ⇡ 4⇥ 104⇣ r

5AU

⌘yr ⌧ 106...7 yr

Page 10: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,
Page 11: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Few stars in Upper Scorpius have sufficient disk massto form new giant planets

Geoff Mathews and the GASPS team

Mdust estimated from 1.2 and 1.3 mm photometry (Mathews et al. 2012). Mgas estimated by

comparison of gas line fluxes to mean gas masses from the DENT grid (e.g. Woitke et al. 2010,

Kamp et al. 2011).

Page 12: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,
Page 13: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Stellar-mass-independent disk structure

settling

mixing

Page 14: Poster Blitz #4 - European Space Agencyherschel.esac.esa.int/Publ/2012/Grenoble/22-1035_PosterBlitz4.pdf · Poster Blitz #4 1. Banzatti, A. 2. Birnstiel, T. 3. Carmona, A. 4. Dougados,

Thank you!