15
Resumen: Secciones Cónicas AMCJ 2011 1 I. Identificando Secciones Cónicas Las secciones cónicas son formadas por la intersección de un doble cono recto y un plano. Debido a que la mayoría de las secciones cónicas no son funciones, a menudo debes utilizar dos funciones para graficar una sección cónica en tu calculadora. Ejemplos: a. Grafica 2 2 49 64 x y en una calculadora gráfica. Identifica la sección cónica. Luego describe el centro y los interceptos. Paso 1. Resuelve por y, utiliza dos ecuaciones si es necesario. 2 2 2 2 2 2 2 2 1 2 2 49 64 49 64 64 49 64 49 64 49 64 49 x y y x x y x y x y x y Paso 2. Grafica ambas funciones en tu calculadora gráfica. *Asegurate que en la opción de ZOOM escoger la opción 5: ZSquare para que la gráfica se vea correctamente. Paso 3. Identificar la sección cónica, su centro e interceptos. Esta sección cónica es un elipse con centro en (0, 0) y con interceptos (8, 0), (-8, 0), (0, 8/7) y (0, -8/7). *Estos interceptos se pueden cotejar con la opción TRACE en su calculadora gráfica.

Resumen: Secciones Cónicas

Embed Size (px)

Citation preview

Page 1: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 1

I. Identificando Secciones Cónicas

Las secciones cónicas son formadas por la intersección de un doble cono recto y un plano.

Debido a que la mayoría de las secciones cónicas no son funciones, a menudo debes utilizar

dos funciones para graficar una sección cónica en tu calculadora.

Ejemplos:

a. Grafica 2 249 64x y en una calculadora gráfica. Identifica la sección cónica. Luego

describe el centro y los interceptos.

Paso 1. Resuelve por y, utiliza dos ecuaciones si es necesario.

2 2

2 2

22

2

2

1

2

2

49 64

49 64

64

49

64

49

64

49

64

49

x y

y x

xy

xy

xy

xy

Paso 2. Grafica ambas funciones en tu calculadora gráfica.

*Asegurate que en la opción de ZOOM escoger la opción 5: ZSquare para que la

gráfica se vea correctamente.

Paso 3. Identificar la sección cónica, su centro e interceptos.

Esta sección cónica es un elipse con centro en (0, 0) y con interceptos (8, 0), (-8,

0), (0, 8/7) y (0, -8/7).

*Estos interceptos se pueden cotejar con la opción TRACE en su calculadora

gráfica.

Page 2: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 2

b. Grafica 2 24 16x y en una calculadora gráfica. Identifica la sección cónica. Luego

describe los vértices y la dirección en que la gráfica abre.

Paso 1. Resuelve por y, utiliza dos ecuaciones si es necesario.

2 2

2 2

22

2

2

1

2

2

4 16

16 4

16

4

16

4

16

4

16

4

x y

x y

xy

xy

xy

xy

Paso 2. Grafica ambas funciones en tu calculadora gráfica.

Paso 3. Identificar la sección cónica, sus vértices y en que dirección la gráfica abre.

Esta sección cónica es una hipérbola con vértices en (-4, 0) y (4, 0) y abre

horizontalmente.

II. Encontrando el Centro y Radio de un Círculo

Toda sección cónica se puede definir en términos de distancias. En el caso del círculo se

puede utilizar la Fórmula de Punto Medio y la Fórmula de Distancia para encontrar su centro

y radio.

*El radio de un círculo es la distancia desde el centro a cualquier punto en el círculo.

Fórmula de Punto Medio

El punto medio ,M Mx y del segmento con extremos 1 1,x y y 2 2,x y es

1 2 1 2, ,2 2

M M

x x y yx y

.

Fórmula de Distancia

La distancia d entre los puntos con coordenadas 1 1,x y y 2 2,x y es

2 2

2 1 2 1d x x y y

Ejemplo:

a. Encuentra el centro y el radio de un círculo que tiene un diámetro con extremos 8, 7

y 2,1 .

Paso 1. Encuentra el centro del círculo.

Utilizando la Fórmula de Punto Medio y 8, 7 como 1 1,x y y 2,1 como

2 2,x y , obtenemos

Page 3: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 3

1 2 1 2, ,2 2

8 2 7 1,

2 2

10 6,

2 2

5, 3

M M

x x y yx y

El centro del círculo es 5, 3 .

Paso 2. Encuentra el radio del círculo.

Aquí utilizamos la Fórmula de Distancia, el centro como uno de los puntos y

cualquiera de los puntos de los extremos como el segundo punto. Es decir

5, 3 como 1 1,x y y 2,1 como 2 2,x y .

2 2

2 1 2 1

22

2 2

2 5 1 3

3 4

9 16

25

5

r x x y y

El radio del círculo es 5.

III. Círculos

Un círculo es el conjunto de puntos en un plano que están a una distancia fija, llamada el

radio, de un punto fijo, llamado el centro.

La ecuación de un círculo está dada por 2 2 2x h y k r donde ,h k son las

coordenadas del centro del círculo y r es radio.

Ejemplos:

a. Escribe la ecuación del círculo con centro 0,5 y radio de 2 .

De la información que nos da el problema tenemos que , 0,5h k y 2r , así que

sustituyendo en la ecuación del círculo obtenemos

2 2 2

2 2 2

22

0 5 2

5 4

x h y k r

x y

x y

b. Escribe la ecuación del círculo con centro 2, 1 y que contenga el punto 4,4 .

De la información que nos da el problema tenemos que , 2, 1h k , pero nos falta

obtener el radio del círculo, el cual lo podemos hallar utilizando la Fórmula de Distancia.

Page 4: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 4

2 2

2 1 2 1

22

2 2

4 2 4 1

2 5

4 25

29

r x x y y

Ya teniendo que el centro es 2, 1 y el radio es 29 sustituimos estos valores en la

ecuación del círculo y obtenemos

2 2 2

222

2 2

2 1 29

2 1 29

x h y k r

x y

x y

IV. Escribiendo la Ecuación de la Recta Tangente a un Círculo

Una tangente es una recta en el mismo plano que el círculo que interseca el círculo en

exactamente un punto.

La tangente a un círculo es perpendicular al radio en el punto de tangencia.

Para encontrar la ecuación de la recta tangente a un círculo con centro ,h k en el punto

,p px y necesitamos utilizar la fórmula de pendiente y la forma punto-pendiente de una

recta para llegar a la forma pendiente-intercepto de la recta.

La pendiente de la recta que contiene los puntos 1 1,x y y 2 2,x y está dada por la

fórmula 2 1

2 1

y ym

x x

.

La forma punto – pendiente de la recta con pendiente m y que contiene el punto 1 1,x y

es 1 1y y m x x

La forma pendiente – intercepto de la recta con pendiente m y con intercepto en y de b

es y mx b

*Se puede obtener la forma pendiente – intercepto al despejar por y la forma punto –

pendiente.

Ejemplo:

a. Escribe la ecuación de la recta que es tangente al círculo 2 2

2 1 25x y en el

punto 6, 2 .

En este diagrama la recta AC es

tangente al círculo en el punto B

Page 5: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 5

Paso 1. Identificar el centro del círculo.

De la ecuación 2 2

2 1 25x y obtenemos que el círculo tiene centro

2,1 y radio 5 .

Paso 2. Encontrar la pendiente del radio en el punto de tangencia.

Esto es buscar la pendiente de la recta que contiene el centro del círculo y el

punto de tangencia.

Utilizando la fórmula de pendiente y los puntos 2,1 y 6, 2 obtenemos

2 1

2 1

2 1

6 2

3

4

y ym

x x

Paso 3. Encontrar la pendiente de la recta tangente.

Como mencionamos anteriormente la tangente a un círculo es perpendicular al

radio en el punto de tangencia.

Es decir que la pendiente de la recta tangente siempre va a ser el recíproco

opuesto de la pendiente del radio en el punto de tangencia.

Así que como 3

4m

la pendiente de la recta tangente va a ser

4

3m

Paso 4. Encontrar la forma pendiente – intercepto de la tangente

Utilizamos la forma punto –pendiente con el punto dado inicialmente 6, 2 y

la pendiente encontrada en el Paso 3, 4

3m

1 1

42 6

3

4 42 6

3 3

42 8

3

48 2

3

410

3

y y m x x

y x

y x

y x

y x

y x

La ecuación de la recta tangente a 2 2

2 1 25x y en el punto 6, 2 es

410

3y x .

Centro del círculo

Pto. de tangencia

Page 6: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 6

V. Elipses

Un elipse es el conjunto de puntos ,P x y en un plano tal que la suma de las distancias

desde cualquier punto P en el elipse a dos puntos fijos, llamados los focos, es constante.

Partes de un elipse

Eje mayor – es el eje mas largo del elipse y por el pasan ambos focos.

Vértices del elipse – son los extremos del eje mayor.

Eje menor – es el eje menor del elipse.

Co-vértices – son los extremos del eje menor.

Centro – punto de intersección de los ejes.

Este diagrama muestra un elipse horizontal, los elipses también pueden ser verticales en ese

caso el eje mayor va a ser vertical y los focos y los vértices se encontrarán en este eje mayor

vertical, de igual manera el eje menor va a ser horizontal y en este se encontrarán los co-

vértices.

La ecuación de un elipse es

2 2

2 21

x h y k

a b

, donde:

,h k es el centro del elipse

a = distancia desde el centro al vértice o covértice en el eje de x .

b = distancia desde el centro al vértice o covértice en el eje de y .

c = distancia desde el centro al foco.

2 2

2distancia del centro distancia del centro

al vertice al co-vérticec

Ejemplos:

a. Escribe la ecuación del elipse con centro en 0,0 , vértice 7,0 y co-vértice

0,2 .

Paso 1. Se recomienda graficar la información dada para visualizar los datos.

centro

co-vértice

co-vértice

vértice vértice foco foco

eje mayor

eje menor

Page 7: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 7

Paso 2. Identificar el centro y los valores de a y b .

En este caso el centro es (0, 0), a = 7 y b = 2.

Paso 3. Sustituir los valores encontrados en el Paso 2 en la ecuación del elipse.

2 2

2 2

2 2

2 2

2 2

1

0 01

7 2

149 4

x h y k

a b

x y

x y

b. Escribe la ecuación del elipse con centro en (0, 0), co-vértice (0, 6) y foco (-8, 0).

Paso 1. Se recomienda graficar la información dada para visualizar los datos.

Paso 2. Identificar el centro y los valores de a y b .

En este caso tenemos que el centro es (0, 0), el valor de a no lo

tenemos, b = 6 y nos dan el valor de c = 8.

Para poder escribir la ecuación del elipse necesitamos encontrar el valor

de a , para esto utilizamos la fórmula: 2 2

2distancia del centro distancia del centro

al vertice al co-vérticec

Donde la distancia del centro al vértice sería a y la distancia del centro al

co-vértice es b.

co-vértice

vértice

centro

co-vértice

foco

centro

Page 8: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 8

Sustituyendo obtenemos:

2 2

2

2 2 2

2 2 2

2

2

2

distancia del centro distancia del centro

al vertice al co-vértice

8 6

64 36

64 36

100

100

10

c

c a b

a

a

a

a

a

a

Paso 3. Sustituir los valores encontrados en el Paso 2 en la ecuación del elipse.

2 2

2 2

2 2

2 2

2 2

1

0 01

10 6

1100 36

x h y k

a b

x y

x y

c. Grafica el elipse con ecuación

2 23 2

19 16

x y .

Paso 1. Identificar el centro y los valores de a y b .

Para encontrar esta información comparamos la ecuación que se nos da

con la ecuación de un elipse

2 2

2 21

x h y k

a b

Así que el centro es (-3, 2)

a2 = 9 o sea que a = 3

b2 = 16 o sea que b = 4

Paso 2. Graficar el centro, graficar puntos a unidades a la derecha e izquierda del

centro y graficar puntos b unidades hacia arriba y hacia abajo del centro; estos

puntos serán los vértices y co-vértices del elipse.

b = 4

a = 3

Page 9: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 9

Paso 3. Dibujar el elipse que pasa por los vértices y co-vértices encontrados.

VI. Hipérbolas

Una hipérbola es el conjunto de puntos ,P x y en un plano tal que la diferencia de las

distancias desde P hasta dos puntos fijos llamados los focos es constante.

Partes de una hipérbola

Eje transversal de simetría – segmento que contiene los vértices y si se extiende

contiene los focos de la hipérbola.

Vértices de una hipérbola - son los extremos del eje transversal.

Eje conjugado de simetría - separa las dos ramas de la hipérbola.

Co-vértices de una hipérbola – son los extremos del eje conjugado.

Este diagrama muestra un hipérbola horizontal, las hipérbolas también pueden ser verticales en

ese caso el eje transversal va a ser vertical y los focos y los vértices se encontrarán en este eje

transversal vertical, de igual manera el eje conjugado va a ser horizontal y en este se

encontrarán los co-vértices.

La ecuación de una hipérbola horizontal es

2 2

2 21

x h y k

a b

La ecuación de una hipérbola vertictal es

2 2

2 21

y k x h

b a

donde:

,h k es el centro de la hipérbola

co-vértices

vértices

foco foco

asíntota asíntota

eje conjugado

eje transversal

Page 10: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 10

a = distancia desde el centro al vértice o covértice en el eje de x .

b = distancia desde el centro al vértice o covértice en el eje de y .

c = distancia desde el centro al foco.

2 2 2c a b

Ejemplos:

a. Escribe la ecuación de la hipérbola con centro (0, 0), vértice (0, -5) y co-vértice (6, 0)

Paso 1. Se recomienda graficar la información dada para visualizar los datos.

Paso 2. Identificar el centro, los valores de a y b y si la hipérbola abre vertical u

horizontalmente.

El centro es (0, 0), el valor de a es 6, el valor de b es 5 y la hipérbola abre

verticalmente (esto se determina por la posición de los vértices).

Paso 3. Sustituir los valores encontrados en el Paso 2 en la ecuación apropiada de la

hipérbola.

Como la hipérbola abre verticalmente utilizamos la ecuación

2 2

2 2

2 2

2 2

2 2

1

0 01

5 6

125 36

y k x h

b a

y x

y x

b. Escribe la ecuación de la hipérbola con centro (0, 0), co-vértice (-3, 0) y foco (0, -5).

Paso 1. Se recomienda graficar la información dada para visualizar los datos.

Paso 2. Identificar el centro, los valores de a y b y si la hipérbola abre vertical u

horizontalmente.

co-vértice

vértice

centro

co-vértice

foco

centro

Page 11: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 11

El centro es (0, 0), el valor de a es 3, el valor de b no lo tenemos y la hipérbola abre

verticalmente (esto se determina por la posición de los vértices). Nos da el valor de c

(distancia del centro al foco) c = 5, el cual utilizaremos para encontrar el valor de b

utilizando la fórmula:

2 2 2

2 2 2

2

2

2

5 3

25 9

25 9

16

16

4

c a b

b

b

b

b

b

b

Paso 3. Sustituir los valores encontrados en el Paso 2 en la ecuación apropiada de la

hipérbola.

Como la hipérbola abre verticalmente utilizamos la ecuación

2 2

2 2

2 2

2 2

2 2

1

0 01

4 3

116 9

y k x h

b a

y x

y x

c. Encuentra los vértices, co-vértices y centro de

2 241

36 81

x y , luego grafícala

junto con sus asíntotas.

Paso 1. Determinar si la hipérbola abre horizontal o verticalmente.

Esto se determina comparando la ecuación dada con las ecuaciones de

las hipérbolas. En este caso es una hipérbola que abre horizontalmente.

Paso 2. Identificar el centro y los valores de a y b .

El centro es (4, 0), a = 6 y b = 9.

Paso 3. Graficar el centro, graficar puntos a unidades a la derecha e izquierda del

centro y graficar puntos b unidades hacia arriba y hacia abajo del centro; estos

puntos serán los vértices y co-vértices de la hipérbola.

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

-9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

x

y

(4,0) (10,0)(-2,0)

(4,9)

(4,-9)

Paso 4. Dibujar un rectángulo en el cual los vértices y co-vértices sean los puntos

medios de los lados del rectángulo.

b = 9

a = 6

Page 12: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 12

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

-9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

x

y

(4,0) (10,0)(-2,0)

(4,9)

(4,-9)

Paso 5. Dibujar las diagonales del rectángulo, estas serán las asíntotas de la

hipérbola.

-6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 8 9 10 11 12

-9

-8

-7

-6

-5

-4

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

x

y

(4,0) (10,0)(-2,0)

(4,9)

(4,-9)

Paso 6. Dibujar la hipérbola de manera tal que pase por los vértices y se acerque a

las asíntotas

En este caso los vértices se encuentran en (-2, 0) y (10, 0) porque la hipérbola es

horizontal.

-15 -10 -5 5 10 15 20

-10

10

20

x

y

(4,0) (10,0)(-2,0)

(4,9)

(4,-9)

VII. Parábolas

Una parábola es el conjunto de todos los puntos ,P x y en un plano que están a una

misma distancia de un punto fijo, llamado foco, y de una recta fija, llamada directriz.

Una parábola tiene un eje de simetría que es perpendicular a la directriz y pasa por el

vértice y el foco.

El vértice de la parábola es el punto medio del segmento que conecta el foco y la

directriz.

Page 13: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 13

x

y

La ecuación de una parábola es 21

4x h y k

p si la parábola abre

horizontalmente (izquierda o derecha).

La ecuación de una parábola es 21

4y k x h

p si la parábola abre verticalmente

(abajo o arriba).

,h k es el vértice

p = la distancia al foco y a la directriz

Si 0p la parábola abre hacia la derecha o hacia arriba.

Si 0p la parábola abre hacia la izquierda o hacia abajo.

Ejemplos:

a. Escribe la ecuación de la parábola con vértice en (0, 4) y directriz x = 4

Paso 1. Se recomienda graficar la información dada para visualizar los datos.

-8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

6

7

8

9

10

11

x

y

Al ver la gráfica podemos concluir que la parábola abre hacia la

izquierda.

Paso 2. Escoger la ecuación apropiada para la parábola.

Como esta parábola es horizontal utilizaremos la ecuación

21

4x h y k

p

Paso 3. Encontrar las coordenadas del vértice.

En este caso el problema nos dá las coordenadas del vertice (0, 4), pero

si no nos lo diera, al menos nos debe dar el foco y la directriz y dado que

el vertice es el punto medio entre el foco y la directriz, entonces

podemos encontrar las coordenadas del vértice.

Paso 4. Encontrar el valor de p .

Sabiendo que p es la distancia desde el vértice al foco y a la directriz, al

mirar lo que graficamos en el Paso 1 nos podemos dar cuenta que la

distancia del vértice a la directriz en 4.

Sabemos que la gráfica abre hacia la izquierda, así que el valor de p

tiene que ser negativo.

Por lo tanto p = -4.

Paso 5. Escribir la ecuación de la parábola.

directriz

eje de

simetría foco

vértice

Page 14: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 14

Tomando la ecuación que escogimos en el Paso 2, las coordenadas del

vértice y el valor de p obtenemos,

2

2

2

1

4

10 4

4 4

14

16

x h y kp

x y

x y

b. Encuentra el vértice, el valor de p , eje de simetría, foco y directriz de la

parábola 21

28

y x . Luego grafícala.

Paso 1. Identificar la forma de la ecuación.

Al comparar la ecuación dada con las dos opciones de ecuaciones que

tenemos determinamos que la ecuación tiene forma

21

4y k x h

p , o sea que la parábola abre verticalmente.

Paso 2. Encontrar las coordenadas del vértice.

Si miramos la ecuación dada y la comparamos con la ecuación que

escogimos en el Paso 2 podemos ver que que k = 0 y h = -2, es decir

que el vértice de la parábola es el punto (-2, 0).

Paso 3. Encontrar el valor de p .

Al comparar la ecuación dada con la que escogimos en el Paso 1 nos

damos cuenta que 1 1

4 8p . Ahora para encontrar el valor de p

resolvemos esta ecuación, lo que podemos hacer multiplicando

cruzado.

1 1

4 8

1 8 1 4

8 4

8 4

4 4

2

p

p

p

p

p

Dado que p es positivo podemos concluir que la parábola abre hacia

arriba.

Paso 4. Graficar la parábola.

Primero graficamos el vértice (-2, 0).

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

6

7

8

9

x

y

Luego como la parábola abre hacia arriba pues p unidades hacia arriba

se va a encontrar el foco y p unidades hacia abajo se va a encontrar la

directriz.

vértice (-2, 0)

Page 15: Resumen: Secciones Cónicas

Resumen: Secciones Cónicas

AMCJ 2011 15

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

6

7

8

9

x

y

Por último dibujamos el eje de simetría y la parábola. Recordando que

el eje de simetría pasa por el vértice y el foco.

-9 -8 -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5

-3

-2

-1

1

2

3

4

5

6

7

8

9

x

y

directriz y = -2

foco (-2, 2)

eje de simetría x = -2