Truyen Khoi

Embed Size (px)

DESCRIPTION

De Trac Nghiem truyen khoi

Text of Truyen Khoi

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    Cu1 Qu trnh chuyn khi l qu trnh

    a Di chuyn vt cht t pha ny sang pha khc

    b Vt cht tip xc gia pha ny v pha khc

    c Chuyn vt cht t pha ny sang pha khc khi 2 pha tip xc trc tip vi nhau

    d Chuyn vt cht t pha ny sang pha khc khi 2 pha ngn cch bi vch ngn

    Cu2 phn chia cc qu trnh chuyn khi da vo

    a Nhit v tnh cht ca 2 pha

    b p sut v tnh cht ca 2 pha

    c Da vo tnh cht ca 2 pha

    d Da vo c trng qu trnh di chuyn v tnh cht ca 2 pha

    Cu 3 Hp th l qu trnh

    a Ht kh hay hi bng cht bng cht lng

    b Ht kh hay hi bng cht rn

    c Vt cht di chuyn t pha lng vo pha hi

    d Vt cht chuyn t pha rn vo pha hi

    Cu4 Chng l qu trnh tch hn hp lng thnh cc cu t ring bit da vo

    a Nhit si khc nhau ca cc cht lng

    b Nhit nng chy khc nhau ca cc cht lng

    c bay hi khc nhau ca cc cu t

    d nht khc nhau ca cc cu t

    Cu5 Hp ph l qu trnh ht kh hay ht hi

    a Bng cht lng

    b Bng cht rn xp

    c Vt cht i t pha lng vo pha hi

    d Vt cht i t pha hi vo pha lng

    Cu6 Trch ly l qu trnh tch cc cht ha tan

    a Trong cht lng bng cht rn

    b Trong cht rn bng cht kh

    c Trong cht lng bng cht lng khc

    d Trong cht kh bng cht rn

    Cu7 Kt tinh l qu trnh tch cht rn trong dung dch

    a Vt cht i t pha kh vo pha rn

    b Vt cht i t pha lng vo pha rn

    c L 1 qu trnh ha hc

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    d L 1 qu trnh ngng kt

    Cu8 Sy kh l qu trnh tch nc ra khi vt liu m

    a Vt cht i t pha lng vo pha rn

    b Vt cht i t pha kh vo pha rn

    c Vt cht i t pha kh vo pha lng

    d Vt cht i t pha rn vo pha kh

    Cu9* Gi M l phn t lng, x l phn khi lng, x l phn mol, X l t s mol, X l t s khi lng

    a x = (x . Mi)/(xk .Mk)

    b x = (x . Mi)/(xk .Mk)

    c x = X/(1-X)

    d x = X/(1-X)

    Cu10 Khi cn bng pha ta c ycb = f(x) vt cht s chuyn t pha x vo pha y nu

    a y < ycb

    b x = ycb

    c y > ycb

    d xcb > x

    CU

    11 Quy tc pha cho php thay i bao nhiu yu t m cn bng pha khng b ph hy v biu thc ca quy tc pha l

    a C = K + - n

    b C = K - - n

    c C = K - + n

    d C= - K + n

    CU

    12 nh lut Henry i vi dung dch l tng p sut ring phn ca kh trn dung dch t l vi phn mol ca n trong dung dch( p = H.x) trong

    a H l hng s Henry khng c th nguyn

    b x l nng t s mol

    c H l Enthalpy n v Kj/ Kg

    d H l hng s Henry c th nguyn l p sut

    CU 13 Biu thc ca nh lut Raoult p = pbh. x trong

    a p: p sut chung ca hi trn dung dch

    b pbh: p sut hi bo ha ca dung dch

    c x: T s mol ca cu t trong dung dch

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    d p: p sut ring phn ca cu t trong hn hp hi

    CU 14 Khi 2 pha tip xc trc tip vi nhau gia 2 pha to thnh 2 lp mng chy dng v nhn c chuyn ng xay

    a Khuych tn trong mng lun lun l khuych tn i lu

    b Khuych tn trong mng lun lun l khuych tn phn t

    c Khuych tn trong nhn lun lun l khuych tn phn t

    d Khuych tn trong mng v trong nhn ging nhau

    CU

    15 ng lc ca qu trnh chuyn khi l = xcb - x hoc y = y- ycb

    a x > xcb; Vt cht chuyn t x vo y

    b x = xcb; Vt cht chuyn t y vo x

    c x < xcb; Vt cht chuyn t x vo y

    d y > ycb; Vt cht chuyn t x vo y

    CU

    16 Khi ng cn bng l ng thng th ng lc trung bnh logarit theo y nh sau

    a ytb = (yyln (yy

    b ytb = (y yln (yy

    c ytb = (yylg (y2y1

    d ytb = (yylg (yy

    CU 1 ng knh thit b chuyn khi xc nh theo cng thc: D = [V/ ( 0,785 . Wo)]

    a V: Lu lng pha y : m3/ pht

    b Wo: Vn tc pha y i qua ton b tit din thit b m/h

    c 0,785: h s gia y v x

    d V: Lu lng pha y : m3/s

    CU 17 Bc thay i nng hay a l thuyt l khang th tch thit b trong xy ra qu trnh chuyn khi sao cho

    a Nng cu t i ra khi n bng nng cn bng khi i vo

    b Nng cu t i vo bng nng cn bng i ra

    c Nng cu t i vo ln hn nng cn bng i ra

    d Nng cu t i ra ln hn nng cn bng khi i vo

    CU 18 Trong qu trnh hp th

    a Cht lng dng ht gi l cht b hp th

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    b Cht kh c ht gi l cht hp th

    c Cht lng dng ht gi l cht hp th

    d Cht kh khng b hp th gi l cht b hp th

    CU 19 Dung mi( cht hp th) tt c yu cu khng th thiu c l

    a nht b

    b Nhit dung ring b

    c Khng to thnh kt ta

    d C tnh ha tan chn lc

    CU

    20 ha tan ca kh trong lng

    a L lng kh ha tan trong cht lng

    b L lng lng cha mt n v khi lng cht kh

    c L lng kh ha tan trong mt n v cht lng

    d n v ca ha tan l % khi lng

    CU

    21 ha tan ca kh vo lng ph thuc

    a Tnh cht kh ca lng, nhit v p sut ca hn hp kh

    b Ch ph thuc vo nhit v p sut mi trng

    c Tnh cht ca kh, lng nhit v p sut ring phn

    d Ch ph thuc tnh cht ca kh v ca lng

    CU 22 nh lut Henry ycb = m. x

    a ng vi kh thc

    b Ph hp vi kh thc vi nng kh nh

    c Khng ph hp vi kh l tng

    d Trong ta Y-X ng cn bng l ng thng

    CU 23 Phng trnh nng lm vic ca qu trnh hp th( Gtr: Lu lng kh tr)

    a Gtr( Y-Yc) = Ltr(X- X)

    b Gy(Y- Yc) = Gx(X- X)

    c

    Gy(Y-Yc) = Gx(X- X)

    d Gtr(X- X) = Ltr( Y- Y)

    CU 24 Mi quan h gia lng dung mi v kch thc thit b

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    a Khi lng dung mi tng kch thc thit b tng

    b Khi lng dung mi gim kch thc thit b gim

    c Khi lng dung mi tng kch thc thit b gim

    d Khi lng dung mi gim kch thc thit b khng i

    CU 25 Cc lai thit b c th dng hp th:

    a Loi b mt , mng, un nng, m phun

    b Loi tng si, un nng, m , a

    c Loi phun, loi ngng t, m, a

    d Lai b mt, mng, m, a, phun

    CU

    26 Yu cu chung ca m l

    a B mt ring ln, th tch t do ln, khi lng ring ln, bn ha

    b B mt ring ln, th tch ln, khi lng ring b, bn ha

    c B mt ring lb, th tch b, khi lng ring b, bn ha

    d B mt ring ln, th tch t do ln, khi lng ring b, bn ha

    CU

    27 Ch lm vic ca thp m gm

    a 3 ch : Ch dng, ch xay, ch si bt

    b 2 ch : Ch dng, ch xay

    c 4 ch : Ch dng, ch qu , ch xay, ch si bt

    d 5 ch : Ch dng,ch qu , ch xay, ch si bt, ch sc

    CU 28 Cn c vo s chuyn ng gia kh v lng ngi ta chia thp a( mm) thnh:

    a 2 lai

    b 3 lai

    c 4 lai

    d 5 lai

    CU 29 Khi tin hnh chng hn hp 5 cu t ngi ta thu c

    a 3 sn phm

    b 4 sn phm

    c 5 sn phm

    d 6 sn phm

    CU 30 Cc phng php chng thng c ng dng trong sn xt

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    a Chng ct n gin dng chng hn hp cc cu t c bay hi gn nhau

    b Chng ct hi nc trc tip dng tch cu t d tan trong nc

    c Chng ct chn khng dng khi cn h thp nhit si ca cu t

    d Chng p sut cao d cho hn hp d ng rn p sut thng

    CU 31 Hn hp c nhit si thay i

    a Ch l dung dch thc

    b i vi dung dch thc cn bng pha ch c xc nh bng thc nghim

    c i vi dung dch l tng cn bng pha c xc nh bang nh lut Henry

    d Ch l dung dch l tng

    CU

    32 Tnh cht c bn ca hn hp cht lng khng ha tan vo nhau

    a p sut ring phn ca cu t ny ph thuc s c mt ca cu t kia

    b p sut chung bng tng p sut hi bo ha ca cc cu t

    c Nhit si ca hn hp cao hn nhit si ca cc cu t

    d C th tch cc cu t bng phng php lc

    CU

    33 Chng ct n gin c ng dng cho nhng trng hp sau

    a Khi nhit si ca 2 cu t gn bng nhau

    b Khi i hi sn phm c tinh khit cao

    c Tch hn hp lng khi tp cht khng bay hi

    d Tch hn hp 2 cu t kh bay hi

    CU 34 Phng trnh cn bng vt liu cho ton b qu trnh chng

    a F= W- D

    b F/(xD-xW) = D/(xF-xD)= W/(xP-xW)

    c F/(xD-xW) = D/(xF-xW)= W/(xD-xF)

    d xD. F = D.xF = W. xD

    CU 35 chng minh phng trnh ng nng lm vic ca on chng v on ct ngi ta tha nhn

    a 5 gi thuyt

    b 4 gi thuyt

    c 3 gi thuyt

    d 2 gi thuyt

    CU 36 Trong cc gi thuyt c tha nhn chng minh phng trnh ng nng lm vic ca on ct c

  • Cu hi n thi QTTB Truyn Khi_tham kho

    copyright GV.Nguyn Knh

    a S mol ca pha hi i t di ln khng i theo chiu cao mi on ct v chng

    b S mol pha lng bng nhau trong tt c tit din ca thp

    c Hn hp u vo thp bt k nhit no

    d un si y thp bng hi nc gin tip

    CU 37 Phng trnh ng nng lm vic on ct c dng

    a y = RX.x/(RX+1)+ xD/(RX+1)

    b y = RX.x/(RX-1)+ xD/(RX-1)

    c x = y(RX+1)/(L+RX) + xW(L-1)/(L+RX)

    d x = y(RX-1)/(L+RX) + xW(L+1)/(L+RX)