Informe de Bernoulli

Embed Size (px)

Text of Informe de Bernoulli

  • 1

    LABORATORIO DE MECANICA DE FLUIDOS

    INTEGRANTES:

    HERNANDO MUOZ SERRANO

    JACINTO NIETO LIAN

    ZAMIR ANTONIO RACEDO LOBO

    LINO ANAYA

    NORVEL JOSEPH WALTERS DAZ

    GRUPO:

    FD1

    PROFESORA:

    ANA GARRIDO

    UNIVERSIDAD DE LA COSTA

    BARRANQUILLA-ATLANTICO

    02/05/2014

  • 2

    TABLA DE CONTENIDO

    1. OBJETIVOS

    2. INTRODUCCION

    3. MARCO TEORICO

    4. EQUIPO

    5. TRABAJO PRE-LABORATORIO

    6. PROCEDIMIENTO EXPERIMENTAL Y MATEMATICO

    7. DATOS EXPERIMENTALES Y RESULTADO

    8. ANALISIS

    9. CONCLUSION

    10. BIBLIOGRAFIA

  • 3

    1. OBJETIVO

    GENERALES

    Demostrar el teorema de Bernoulli mediante la realizacin de la prctica en

    el equipo Venturi e Investigar la validez de la ecuacin de Bernoulli cuando

    se aplica en tuberas y canales.

    ESPECIFICOS

    Identificar los variables como altura de presin, altura dinmica, altura

    total, utilizadas en la experiencia de laboratorio.

    Aplicar la ecuacin de Bernoulli para calcular la cabeza de velocidad del

    sistema en cada punto.

    Relacionar las diferencias existentes entre los resultados prcticos

    obtenidos en el laboratorio de mecnica de fluidos con respecto a los

    que se encuentran plasmados en las diferentes fuentes de informacin,

    para lograr obtener las conclusiones

  • 4

    2. INTRODUCCION

    El teorema de Bernoulli, establece el comportamiento de un fluido movindose a lo

    largo de una lnea de corriente en el cual importante resaltar y destacar; que este

    teorema tiene tres fundamentos que son; la energa cintica, la energa potencial

    gravitacional y por ltimo la energa de flujo del fluido. Teniendo siempre en cuenta

    que no existen perdidas energticas por friccin, por viscosidad o por energas

    aadidas, por lo cual Bernoulli defini su teora para fluidos ideales; sabiendo

    que en la realidad es muy difcil que se presente bajo esas condiciones.

    El propsito de esta experiencia radica principalmente en demostrar lo establecido

    en el teorema de Bernoulli, respecto a la energa de un fluido.

    La informacin presentada a continuacin es producto de diversas fuentes tales

    como libros de mecnica de fluidos, la Internet, la teora explicada en clase, los

    resultados obtenidos. A partir de esta se explicara, terica y experimentalmente el

    teorema de Bernoulli en el tubo Venturi, logrando as analizar los resultados

    arrojados por las formulas pertinentes y correlacionarlos con lo establecido en la

    teora.

  • 5

    3. MARCO TEORICO

    El principio de Bernoulli, tambin denominado ecuacin de Bernoulli o Trinomio de

    Bernoulli, describe el comportamiento de un fluido movindose a lo largo de una

    lnea de corriente. Fue expuesto por Daniel Bernoulli en su obra Hidrodinmica en

    1738. Este expresa que en un fluido ideal (sin prdidas de energa por viscosidad

    o por rozamiento) en rgimen de circulacin por un conducto cerrado, la energa

    que posee el fluido permanece constante a lo largo de su recorrido. La energa de

    un fluido en cualquier momento consta de tres componentes:

    1. Cintico: Es la energa debida a la velocidad que posea el fluido.

    2. Potencial gravitacional: Es la energa debido a la altitud que un fluido posea.

    3. Energa de flujo: Es la energa que un fluido contiene debido a la presin

    hidrosttica que este ejerce.

    Por ello la ecuacin de Bernoulli consta de estos mismos trminos.

    Dnde:

    V = velocidad del fluido en la seccin considerada.

    g = aceleracin gravitatoria

    z = altura topogrfica en la direccin de la gravedad desde una cota de referencia.

    P = presin hidrosttica a lo largo de la lnea de corriente.

    = densidad del fluido.

    Como ya se mencion el modelo matemtico y fsico que describe Bernoulli, fue

    desarrollado teniendo en cuenta las siguientes consideraciones:

    Viscosidad (friccin interna) = 0 Es decir, se considera que la lnea de

    corriente sobre la cual se aplica se encuentra en una zona 'no viscosa' del

    fluido.

    Caudal constante

    Fluido incompresible, donde es constante.

    La ecuacin se aplica a lo largo de una lnea de corriente.

    Sin embargo esto inicialmente fue estudiado y considerado por Euler.

    Cada uno de los trminos de esta ecuacin tiene unidades de longitud, y a la vez

    representan formas distintas de energa; en hidrulica es comn expresar la

    energa en trminos de longitud, y se habla de altura o cabezal. As en la ecuacin

    de Bernoulli los trminos suelen llamarse alturas o cabezales de velocidad, de

  • 6

    presin y cabezal hidrulico, el trmino la altura topogrfica z se suele agrupar con

    P / para dar lugar a la llamada altura piezomtrica o tambin carga piezomtrica.

    As:

    Tambin podemos reescribir este principio en forma de suma de presiones

    multiplicando toda la ecuacin por , de esta forma el trmino relativo a la

    velocidad se llamar presin dinmica, los trminos de presin y altura se agrupan

    en la presin esttica.

    Por otro lado una forma de analizar lo establecido por Bernoulli y Euler, es a travs

    del flujo en un tubo Venturi (ver ilustracin 1). Este es un tubo que posee dos

    secciones de igual dimetro y una intermedia de seccin trasversal menor, al igual

    que conductos o segmentos independientes en su interior. A travs de este se

    mueve el fluido que al pasar por la seccin de menor dimetro disminuye su

    presin y aumenta su velocidad. Sin embargo a travs de sus lneas de corriente

    se cumple lo establecido por Bernoulli, as como a la entrada y salida del tubo.

    Ilustracin 1: Tubo Venturi

  • 7

    En el cual, el principio de Bernoulli puede ser visto como otra forma de la ley de la

    conservacin de la energa, es decir, en una lnea de corriente cada tipo de

    energa puede subir o disminuir en virtud de la disminucin o el aumento de las

    otras dos. En este tubo la aceleracin del fluido en un camino equipotencial (con

    igual energa potencial) implica una disminucin de la presin. Gracias a este

    efecto observamos que las cosas ligeras muchas veces tienden a salirse de un

    automvil en movimiento cuando se abren las ventanas, ya que la presin del aire

    es menor fuera del auto ya que est en movimiento respecto a aqul que se

    encuentra dentro del auto, donde la presin es necesariamente mayor; pero en

    forma aparentemente contradictoria el aire entra al carro, pero esto ocurre por

    fenmenos de turbulencia y capa lmite.

  • 8

    4. EQUIPO

    Banco Hidrulico F1-10

    Equipo de prueba de Bernoulli F1-15

    Cronmetro

  • 9

    5. TRABAJO PRE-LABORATORIO

    Tabla 1. Datos experimentales obtenidos.

    TUBO ALTURA (mm)

    1 207

    2 188

    3 162

    4 144

    5 111

    8 210

    Volumen recolectado: 5L

    Tiempo de recoleccin: 55.02 segundos

    Donde el tubo 8 y su lectura representan la energa total del flujo.

    Tabla 2. Datos experimentales en unidad de metros, dimetro.

    TUBO ALTURA (mm) DIAMETRO (m)

    1 0.207 0.025

    2 0.188 0.0139

    3 0.162 0.0118

    4 0.144 0.0107

    5 0.111 0.01

    8 0.210 -----

    Volumen recolectado: 0.005 m3

  • 10

    6. PROCEDIMIENTO EXPERIMENTAL Y MATEMATICO

    EXPERIMENTAL

    Para la demostracin del teorema de Bernoulli, la prctica es muy sencilla.

    Utilizando un tubo Venturi, el cual es un conducto de acrlico transparente que en

    su interior tiene diferentes secciones circulares. Est compuesto por unos

    agujeros, por medio de los que se mide la presin ya que estn conectados a los

    manmetros alojados en la plataforma. La ilustracin 1 representa los

    manmetros, la ilustracin 2, describe la distribucin del tubo Venturi.

    Los manmetros son tubos verticales alojados en una plataforma, que a su vez

    contiene una regla graduada en milmetros, a travs de la cual se hace la lectura

    de la altura de presin. Cada tubo est conectado con una seccin transversal por

    medio de una manguera que se introduce en los agujeros. se tomarn las medidas

    correspondiente a la altura h del lquido de los tubos 1, 2,3,4,5 y 8; sus dimetros

    estn consignados en la tabla 2,y estn dados por el fabricante. Por otro lado en la

    base del banco hidrulico hay un indicador del volumen recolectado, que con

    ayuda del cronometro tomaremos el tiempo en el que se llena x cantidad de

    volumen en litros.

    Imagen 1. Equipo de prueba: Tuvo Venturi

    Imagen 2. Tuvo Venturi

  • 11

    MATEMATICO

    Teniendo en cuenta lo plasmado en el teorema de Bernoulli en donde afirma que

    la energa total de fluido H es igual en todos los puntos de una canal procedemos

    entonces a comprobar con los datos experimentalmente este teorema.

    En primera instancia tendremos en cuenta la siguiente formula que representa la

    energa total en el fluido:

    Despus procedemos a hallar el caudal que es el mismo para todas las secciones

    de la tubera y cuyo valor lo utilizaremos para los clculos de casa seccin de la

    tubera:

    A continuacin hallamos la velocidad ( ), la cabeza de velocidad dinmica (

    ) y

    la cabeza total (H) para cada uno de los tubos. Teniendo en cuenta los dimetros dados en el clculo de rea de cada tubo se utiliz:

    Tabla 3. Dimetros.

    TUBO DIAMETRO (m)

    1 0.025

    2 0.0139

    3 0.0118

    4 0.010